期刊文献+

伪酉矩阵与Radford代数的*-结构 被引量:1

Pseudo-unitary Matrices and the *-structures of Radford Algebra
下载PDF
导出
摘要 复数域上8维Radford代数是一个Hopf代数,其*-结构由一个满足??AA =I 的2级复数矩阵A所确定,这样的矩阵称为伪酉矩阵,而且由2个2级伪酉矩阵所确定的*-结构等价的充要条件是这2个伪酉矩阵满足一个等价关系~.研究了2级伪酉矩阵及其关于~的等价分类,证明了任一个2级伪酉矩阵关于~等价于2级单位矩阵,由此得到在*-结构等价的意义下,8维Radford代数有唯一的一个Hopf*-代数结构. The 8-dimensional Radford algebra over the complex number field is a Hopf algebra whose-structures are determined by complex 2×2-matrices A satisfying A=I.Such matrices are called pseudo-unitary matrices.The two-structures determined by two pseudo-unitary matrices are equivalent if and only if the two pseudo-unitary matrices satisfy an equivalence relation~.In this paper,the pseudo-unitary 2×2-matrices are studied and classified with respect to the equivalence relation~.It is shown that any pseudo-unitary 2×2-matrix is equivalent to the identity matrix with respect to~.Consequently,up to the equivalence of-structures,the 8-dimensional Radford algebra has a unique Hopf-algebra structure.
作者 李诗雨 周海楠 沈雯洁 陈惠香 LI Shiyu;ZHOU Hainan;SHEN Wenjie;CHEN Huixiang(College of Mathematical Sciences,Yangzhou University,225002,Yangzhou,Jiansu,PRC)
出处 《曲阜师范大学学报(自然科学版)》 CAS 2019年第3期19-22,共4页 Journal of Qufu Normal University(Natural Science)
基金 国家自然科学基金(11571298) 江苏省大学生创新项目
关键词 Hopf*-代数 Radford代数 伪酉矩阵 等价关系 等价分类 Hopf-algebra radford algebra pseudo-unitary matrix equivalence relation equivalence classification
  • 相关文献

参考文献1

二级参考文献14

  • 1Chen H X. A class of noncommutative and noncocommutative Hopf algebras- the quantum version. Comm Algebra, 1999, 27: 5011-5023.
  • 2Chen H X. Irreducible representations of a class of quantum doubles. J Algebra, 2000, 225: 391-409.
  • 3Chen H X. Finite-dimensional representations of a quantum double. J Algebra, 2002, 251: 751-789.
  • 4Chen H X. Representations of a class of Drinfeld’s doubles. Comm Algebra, 2005, 33: 2809-2825.
  • 5Kassel C. Quantum Groups. New York: Springer-Verlag, 1995.
  • 6Majid S. Foundations of Quantum Group Theory. Cambridge: Cambridge Univ Press, 1995.
  • 7Masuda T, Mimachi K, Nagakami Y, Noumi M, Saburi Y, Ueno K. Unitary representations of the quantum group SUq(l.l): Structure of the dual space of Uq(sl(2)). Lett Math Phys, 1990, 19: 187-194.
  • 8Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS Reg Conf Ser Math, No 82. Providence: Amer Math Soc, 1993.
  • 9Sweedler M E. Hopf Algebras. New York: Benjamin, 1969.
  • 10Wang Z, Chen H X. Generic modules over a class of Drinfeld’s quantum doubles. Comm Algebra, 2008, 36: 3730-3749.

共引文献1

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部