期刊文献+

基于领域识别的主题模型观点挖掘研究 被引量:1

Opinion mining research on topic model based on domain identification
下载PDF
导出
摘要 网络新媒体的快速发展,使得网上评论数据呈现爆炸性增长,面对数量庞大的网络文本,使用传统的人工方式来提取观点会导致效率低下、分类界限模糊、领域适应性差等问题。为解决以上问题,在对传统LDA模型进行改进的基础上,提出了一个基于领域判别的LDA主题模型来对在线评论进行观点挖掘。首先,在标准LDA模型中引入领域层,对语料库中的文档采样领域标签,利用领域化的参数来求解LDA模型;其次,考虑到句子间的情感从属关系,在主题层和单词层之间加入情感层,并引入情感转移变量进行表示,提高了情感极性分析的精度,实验结果表明了本文所提模型和理论的有效性。 With the rapid development of new network media,the quantity of online reviews has a tendency of explosive growth.Traditional manual methods for opinion mining have some problems when dealing with tremendous online texts,such as low efficiency,fuzzy classification boundary,and limited domain-adaption ability.In order to solve the above problems,we improve the traditional latent Dirichlet allocation(LDA)model,and propose a LDA topic model based on domain identification for opinion mining of online reviews.Firstly,a domain layer is added to the standard LDA model to sample the domain tags of the document,and field parameters are utilized to solve the LDA model.Secondly,given the sentimental connection between sentences,we insert a sentiment layer between the topic layer and word layer.Sentimental transition variable is introduced to denote related characters,which can increase the accuracy of sentiment polarity analysis.Experimental results verify the validity of the proposed model and theory.
作者 马长林 闵洁 谢罗迪 MA Chang-lin;MIN Jie;XIE Luo-di(School of Computer,Central China Normal University,Wuhan 430079;School of Information Engineering,Xinyang Agriculture and Forestry University,Xinyang 464000,China)
出处 《计算机工程与科学》 CSCD 北大核心 2019年第7期1297-1302,共6页 Computer Engineering & Science
基金 国家自然科学基金(61003192)
关键词 LDA模型 领域识别 观点挖掘 情感转移变量 LDA model domain identification opinion mining sentimental transition variable
  • 相关文献

参考文献4

二级参考文献44

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2Yang Y, Pedersen J O. A comparative study on feature selection in text categorization [C] //Proc of the 14th Int Conf on Machine Learning. San Francisco, CA: Morgan Kaufmann, 1997:412-420.
  • 3Pang B, Lee L, Vaithyanathan S. Thumbs up? sentiment classification using machine learning techniques [C] //Proc of the Conf on Empirical Methods in Natural Language Processing (EMNLP). Philadelphia, PA~ Association for Computaional Linguistics, 2002:79-86.
  • 4Wang Suge, Wei Yingjie, Li Deyu, et al. A hybrid method of feature selection for Chinese text sentiment classification[C] //Proc of the 4th Int Conf on Fuzzy Systems and Knowledge Discovery. Los Alamitos, CA: IEEE Computer Society, 2007:435-439.
  • 5Tan Songbo, Zhang Jin. An empirical study of sentiment analysis for Chinese documents [J]. Expert Systems with Application, 2008, 34(4):2622-2629.
  • 6Turney P D, Littman M L. Measuring praise and criticism: inference of semantic orientation from association[J]. ACM Trans on Information Systems, 2003, 21 (4) : 315-346.
  • 7Komorowski J, Pawlak Z, Polkowski L, et al. Rough Sets: A Tutorial [M]. Rough Fuzzy Hybridization: A New Trend in Decision Making. Berlin: Springer, 1999:3-98.
  • 8Chouchoulas A, Shen Q. Rough set-aided keyword reduction for text categorization [J]. Applied Artificial Intelligence, 2001, 15(9): 843-873.
  • 9Bao Yongguang, Aoyama Satoshi, Yamada Kazutaka, et al. A rough set based hybrid method to text categorization [C] // Proc of WISE'01. Los Alamitos, CA: IEEE Computer Society, 2001:254-261.
  • 10Singh S, Dey L. A new customized document categorization scheme using rough memship [J]. Applied Soft Computing, 2005 (5):373-390.

共引文献154

同被引文献14

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部