期刊文献+

类内类间距离在CNN识别心拍类中的应用研究 被引量:2

Application of Intra-Class and Inter-Class Distance in CNN Recognition of Heart Beat
下载PDF
导出
摘要 心脏疾病严重威胁人类身体健康,心电图(Electrocardiogram,ECG)心拍分类对心脏疾病的临床诊断和自动诊断具有重要意义。现有基于深度学习生成的ECG心拍特征虽然优于基于传统方法生成的心拍特征,但是因ECG中各类间存在着严重的数据不平衡问题,致使现有基于深度学习方法生成的心拍特征的性能仍不甚理想。针对这一问题,以卷积神经网络(Convolutional Neural Network,CNN)为基础,在各类心拍等量数据基础上构建能有效表达各类心拍共性信息的共性CNN模型,以共性CNN模型和最小化类内距离最大化类间距离模型为基础,分别在各类心拍数据上构建能有效反映相应心拍类别倾向性信息的类别CNN模型,综合各心拍类别CNN模型的输出进行识别与分类。在MIT-BIH数据库上的实验结果显示,该方法识别分类心拍的各项指标均达到100%,解决了MIT-BIH数据库中ECG四类心拍自动识别分类的问题。 Heart disease is a serious threat to human health. Electrocardiogram(ECG)classification of heart beat plays an important role in clinical diagnosis and automatic diagnosis of heart disease. Although the existing ECG heart beat fea- tures generated by deep learning are superior to the heart beat features generated by traditional methods, there are serious data imbalance problems among various types of ECG, resulting in the poor performance of existing heart beat features generated based on deep learning methods. In order to solve this problem, based on the Convolutional Neural Network (CNN), this paper first constructs a common CNN model which can effectively express the common information of all kinds of heart beat on the basis of the equal data of all kinds of heart beat. Then based on the model of minimizing intra- class distances and maximizing inter-class distances, a category CNN model that can effectively reflect the propensity information of the corresponding heart beat categories is constructed on each type of heart beat data. Finally, the output of each heart beat category CNN model is integrated for identification and classification. The experimental results on the MIT-BIH database show that this method achieves 100% of the indicators of the classification of heart beat, solves the problem of automatic identification and classification of ECG four types of heart beats in the MIT-BIH database.
作者 原永朋 游大涛 武相军 魏梦凡 朱萌博 耿旭东 贾乃仁 YUAN Yongpeng;YOU Datao;WU Xiangjun;WEI Mengfan;ZHU Mengbo;GENG Xudong;JIA Nairen(School of Software,Henan University,Kaifeng,Henan 475000,China;Shenzhen Rui AI Xin An Mobile ECG Information Service Co.,Ltd.,Shenzhen,Guangdong 518101,China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第14期242-248,共7页 Computer Engineering and Applications
基金 教育厅重点科研项目(No.16A520003)
关键词 心电图(ECG) 心拍分类 卷积神经网络(CNN) MIT-BIH数据库 共性卷积神经网络 个性卷积神经网络 Electrocardiogram(ECG) classification of heart beat Convolutional Neural Network(CNN) MIT-BIH database common Convolutional Neural Network(CNN) category Convolutional Neural Network(CNN)
  • 相关文献

参考文献5

二级参考文献51

  • 1丁玉琴.不典型急性心肌梗死20例诊断及误漏诊分析[J].中国误诊学杂志,2009,9(6):1368-1369. 被引量:10
  • 2宋喜国,邓亲恺.MIT-BIH心率失常数据库的识读及应用[J].中国医学物理学杂志,2004,21(4):230-232. 被引量:58
  • 3焦塑.非典型急性心肌梗死14例误诊原因分析[J].齐鲁医学杂志,2005,20(5):439-439. 被引量:1
  • 4郭继红,张萍.动态ECG学[M].北京:人民卫生出版社.2003:615-683.
  • 5DRANCA L, GOHI A, ILLARRAMENDI A.. Real-time detection of transient cardiac ischemic episodes from ECG signals [J]. Physiological Measurement, 2009, 30: 983-998.
  • 6ROGER A W, ANDREW H, NEAL K, et al. T-waves in the exercise ECG, Their location and occurrence [J]. IEEE Transactions on Biomedical Engineering, 1979, 26 (11):639- 643.
  • 7BARTINEZ J P, ALMEIDA R, OLMOS S,et al. A wavelet- based ECG delineator.. Evaluation on standard database [J]. IEEE Trans Biomed Eng, 2004, 51(4) :570-581.
  • 8EMILIO S, MARCELINO M, JAVIER C,et al. Application of adaptive signal processing for determining the Limits of P and T waves in an ECG [J]. IEEE Transactions on Biomedical Engineering, 1998, 45(8):1077-1080.
  • 9ZNANG Q, ILLANES MANRIQUEZ A, MEDIGUE C, et al. An algorithm for robust and efficient location of T-wave ends in electrocardiograms [J].IEEE Transactions on Biomedical Engineering,2006, 53(12): 2544-2552.
  • 10ZNANG Q, ILLANES MANRIQUEZ A, MEDIGUE C, et al. Robust and efficient Location of T-wave ends in electrocardiogram [C]. Computers in Cardiology, 2005, 32:711- 714.

共引文献41

同被引文献12

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部