期刊文献+

一类单调有界连续可微函数的导函数极限问题 被引量:1

Derivative Functions’Limit Problems for Monotone,Bounded and Continuously Differentiable Functions
下载PDF
导出
摘要 本文基于文献给出的反例,知道了并不是所有单调有界且连续可微函数在x→时导函数的极限都为0。并且基于本文的定理,给出了能证明单调有界且连续可微函数在x→时导函数极限为0的两个充分条件。 Based on the counterexample given in literature,it is known that not all derivative functions of monotone,bounded and continuously differentiable functions have a limit of 0 when x→∞.Based on the theorem of this paper,two sufficient conditions are given to prove that the derivative functions of monotone,bounded and continuously differentiable functions have a limit of 0 when x→∞.
作者 毛俊杰 刘晓薇 MAO Jun-jie;LIU Xiao-wei(School of Mathematics and Statistics,Qilu University of Technology (Shandong Academy of Sciences),Jinan250353,China)
出处 《齐鲁工业大学学报》 2019年第3期79-80,共2页 Journal of Qilu University of Technology
基金 国家自然科学基金(11601251).
关键词 导函数 极限 一致连续 derivative functions limit uniform continuity
  • 相关文献

参考文献2

二级参考文献5

共引文献2

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部