摘要
本文基于文献给出的反例,知道了并不是所有单调有界且连续可微函数在x→时导函数的极限都为0。并且基于本文的定理,给出了能证明单调有界且连续可微函数在x→时导函数极限为0的两个充分条件。
Based on the counterexample given in literature,it is known that not all derivative functions of monotone,bounded and continuously differentiable functions have a limit of 0 when x→∞.Based on the theorem of this paper,two sufficient conditions are given to prove that the derivative functions of monotone,bounded and continuously differentiable functions have a limit of 0 when x→∞.
作者
毛俊杰
刘晓薇
MAO Jun-jie;LIU Xiao-wei(School of Mathematics and Statistics,Qilu University of Technology (Shandong Academy of Sciences),Jinan250353,China)
出处
《齐鲁工业大学学报》
2019年第3期79-80,共2页
Journal of Qilu University of Technology
基金
国家自然科学基金(11601251).
关键词
导函数
极限
一致连续
derivative functions
limit
uniform continuity