摘要
首先改进萤火虫算法的初始种群与移动步长,并用来优化BP神经网络初始权值与阈值参数,以构建IGSO-BP神经网络协同集成学习算法。建立基于该学习算法的大学生个人信用评价模型,Matlab仿真验证了模型的可行性。
The improved initial populations and moving steps of glowworm algorithm are used to optimize the initial weights and threshold parameters of BP neural network for constructing IGSO-BP neural network collaborative ensemble learning algorithm. A college student credit evaluation model based on the learning algorithm is established with simulation verification.
作者
袁章帅
李敬明
闫瑞林
严升
YUAN Zhangshuai;LI Jingming;YAN Ruilin;YAN Sheng(School of Management Science and Engineering, Anhui University of Finance and Economics, Bengbu 233030,China)
出处
《长春工业大学学报》
CAS
2019年第3期294-298,共5页
Journal of Changchun University of Technology
基金
安徽省社会科学规划办项目(AHSKY2018D09)
安徽财经大学科研创新基金项目(XSKY1894)
关键词
萤火虫算法
BP神经网络
信用评估
glowworm algorithm
BP neural network
personal credit evaluation of university students.