期刊文献+

互联网金融收益率的统计预测研究——以余额宝为例 被引量:1

Statistical Prediction Research on Internet Financial Return Rate——TakingYu’ EBao as an example
原文传递
导出
摘要 以余额宝每万份收益数据为研究样本,构建ARIMA模型进行研究,判断模型的拟合效果,对余额宝每万份收益的发展趋势进行预测.研究结果表明,余额宝每万份收益具有一阶单整的性质,当期余额宝每万份收益的变化受到上一期余额宝每万份收益的影响.此外,模型预测的准确度受到国家政策、市场利率、规则调整等不确定因素影响.可以根据ARIMA模型的预测大致判断出余额宝每万份收益的未来走势,为互联网金融市场众多参与方提供决策参考. This paper takes per ten thousand copies of return on Yu’ EBao as the research sample,constructs ARIMA model to study,judges the fitting effect of the model,and forecasts the development trend of per ten thousand copies of return on Yu’EBao.The research results show that per ten thousand copies of return on Yu’EBao have the first-order monolithic nature,and the change of per ten thousand copies of return on Yu,EBao in the current period is affected by the last earnings of Yu’ EBao.In addition,the accuracy of model prediction is affected by uncertainties such as national policy,market interest rate,regulation adjustment and so on.According to the forecast of ARIMA model,we can roughly judge the future trend of Yu’ EBao,and provide decision-making reference for many participants in the Internet financial market.
作者 王明哲 WANG Ming-zhe(China Institute of Industrial Relations, Beijing 100048, China)
出处 《数学的实践与认识》 北大核心 2019年第12期322-328,共7页 Mathematics in Practice and Theory
基金 北京社科基金项目“京津冀普惠金融协同发展降低财富逆转移的路径分析及规模测度(18YJC029)” 北京社科基金项目“基于大数据技术提升首都物流服务品质的策略研究(18GLA009)”
关键词 互联网金融 余额宝 时间序列分析 每万份收益预测 ARIMA finance Yu' EBao Time series analysis Per ten thousand copies of return forecast ARIMA
  • 相关文献

参考文献10

二级参考文献52

  • 1李正宏.波罗的海运价指数波动规律研究与预测[J].上海海事大学学报,2004,25(4):69-72. 被引量:17
  • 2王一鸣,李剑峰.我国债券市场收益率曲线影响因素的实证分析[J].金融研究,2005(1):111-124. 被引量:45
  • 3靳珊.ARIMA模型在贵州GDP中的应用[J].科教文汇,2007(10Z):154-155. 被引量:7
  • 4崔海亮,徐枫.同业拆借利率影响因素的研究[J].管理评论,2007,19(11):3-10. 被引量:14
  • 5刘东.互联网金融新模式之余额宝的发展与监管[D].上海:华东政法大学,2014.
  • 6Mavrides M. Granger Causality Tests of Stock Re- turns: The US and Japanese Stock Markets [J]. Managerial Finance, 2000, 26(12):13--25.
  • 7Huang N E, Shen Z, Long S R. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis [J]. Process of the Royal Society of London, 1998, (454) :903--950.
  • 8HuangNE, Wu M L, Shen S P, et al . Applica- tions of Hilbert-Huang Transform to Non-Stationa- ry Financial Time Series Analysis [J]. Applied Sto- chastic Models in Business and Industry, 2003, (19) :245-268.
  • 9Wu Z H, Huang N E. Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method [J]. Advances in Adaptive Data Analysis, 2009, 1(1) :1--41.
  • 10Wu Zhaohua, Huang N E. A Study of Characteris- Lies of White Noise Using the Empirical Model De- :omposition Method [J]. Proceedings of Royal Soci- ety of London, 2004, (460) :1597--1611.

共引文献20

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部