期刊文献+

关于随机过程模型的研究和应用

Research and Application of Stochastic Process Model
下载PDF
导出
摘要 利用最小二乘估计思想改进了原来的最小对比度估计方法,并利用改进后的方法估计了Log Gaussian Mixture Cox过程模型(LGMCP模型)的参数。利用R统计软件中spatstat包的细胞数据集验证了改进后的估计方法的有效性,结果表明改进后的估计方法能有效估计LGMCP模型的参数。 The original minimum contrast estimation method was improved according to the least squares estimation idea. The improved estimation method was applied to estimate the parameters of Log Gaussian Mixture Cox process model (abbreviated as LGMCP model). The cell data set of spatstat package in R statistical software was used to verify the effectiveness of the improved estimation method. The results showed that the improved estimation method could effectively estimate the parameters of LGMCP model.
作者 王慧霞 赵联文 黄磊 WANG Huixia;ZHAO Lianwen;HUANG Lei(School of Mathematics,Southwest Jiaotong University,Chengdu 610039,China)
出处 《新乡学院学报》 2019年第6期6-9,共4页 Journal of Xinxiang University
基金 教育部人文社会科学基金项目(17YJC790119) 教育部人文社会科学西部基金项目(17XJCZH002)
关键词 随机过程 最小对比度估计 最小二乘估计 stochastic process minimum contrast estimation least squares estimation
  • 相关文献

参考文献5

二级参考文献30

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部