摘要
任务分配是无人机完成多样化军事任务的重要保证.为了合理制定任务方案,有效降低飞行成本,根据无人机在军事行动中需要运输的物资数量及目的地位置,建立了追求飞行成本最小并考虑时间约束的无人机任务分配优化模型,应用列生成算法对飞行方案进行优化选择.设计实验对列生成算法和差分进化算法进行对比分析,结果表明,列生成算法具有更高的求解精度.在大规模任务分配问题中,利用该算法对飞行方案进行优化选择,显著提高军事任务完成效率.
Mission assignment is an important guarantee for unmanned aerial vehicles(UAVs) to complete diversified military missions.In order to properly formulate the mission plan and reduce the cost of flight, a mission assignment optimization model which minimizes the cost of flight and considers time constraints is established. It depends on the amount of resource and destinations that the UAV needs to transport during military operations. The column generation algorithm optimizes the flight plan. The experiment compares the column generation algorithm and the intelligent optimization algorithms. The results show that the column generation algorithm has higher accuracy. In large-scale mission planning, this algorithm is used to optimize the choice of aircraft flight program, significantly improving the efficiency of military mission completion.
作者
李瑞阳
王智学
何红悦
邓巧雨
LI Rui-Yang;WANG Zhi-Xue;HE Hong-Yue;DENG Qiao-Yu(School of Command and Control Engineering, Army Engineering University,Nanjing Jiangsu 210000, China)
出处
《指挥与控制学报》
2019年第2期147-152,共6页
Journal of Command and Control
关键词
无人机
任务分配
路径优化
列生成算法
unmanned aerial vehicle
mission assignment
path optimization
column generation algorithm