期刊文献+

套片蛇形管滴淋式发生器性能实验研究 被引量:2

Experimental study on theperformance of serpentine coil with fins drip-type generator
下载PDF
导出
摘要 自行搭建采用套片蛇形管滴淋式发生器的吸收制冷实验装置,并进行发生器性能实验研究。实验结果表明:发生器部件传热存在一个最佳的滴淋稀溶液循环量。随着发生器入口热水温度的增加,发生器热负荷及发生温度均增加。在较小滴淋密度条件下,随着稀溶液滴淋密度的增加,溶液在发生器管外的扰动增强,对流传热系数也随之增加。在实验工况范围内,发生器管外侧对流表面传热系数在150-480 W/(m^2·℃)之间。 The absorption refrigeration experimental device with a serpentine tube with copper fins generator was built by ourselves and experimental research on the thermal performance of the generator was carried out. The experimental results show that there is an optimum amount of dilute solution circulation for the generator. As the hot water inlet temperature of the generator increases, both the generator heat load and the generation temperature increase. As the spray density of the dilute solution increases, the disturbance of the solution outside the heat transfer tubes in generator is strengthened, and the convective heat transfer coefficient increases. In the experimental conditions, the convective heat transfer coefficient of the lithium bromide solution outside the generator tubes is between 150-480 W/(m^2·℃).
作者 闫晓娜 刘利华 唐黎明 Yan Xiaona;Liu Lihua;Tang Liming(School of Landscape Architecture,Zhejiang A &F University,Hangzhou 311300,China;School of Civil Engineering and Architecture,Zhejiang Sci-Tech University,Hangzhou 310018,China;Institute of Refrigeration and Cryogenics,Zhejiang University,Hangzhou 310027,China)
出处 《低温工程》 CAS CSCD 北大核心 2019年第3期46-52,共7页 Cryogenics
基金 国家高技术研究发展计划(863计划No.2008AA05Z419) 国家自然科学基金项目(NO.51706060)
关键词 套片 蛇形管 发生器 对流传热系数 实验 copper fin serpentine tube generator convective heat transfer coefficient experiment
  • 相关文献

参考文献1

二级参考文献12

  • 1索科洛夫 津格尔.喷射器[M].北京:科学出版社,1977..
  • 2Abdulateef J M, Sopian K, Alghoul M A, et al. Review on solar-driven ejector refrigeration technologies[J]. Renewable and Sustainable Energy Reviews, 2009, 13(6-7) : 1338-1349.
  • 3Deng J, Wang R Z, Han G Y. A review of thermally activated cooling technologies for combined cooling, heating and power systems [J]. Progress in Energy and Combustion Science, 2011, 37(2) : 172-203.
  • 4Herold Keith E, Radermacher Reinhard, Klei Sanford A. Absorption chillers and heat pumps [M]. New York: CRC Press, 1996, 161-174.
  • 5Pongsid Srikhirin, Satha Aphornratana, Supachart Chungpaibulpatana. A review of absorption refrigeration technologies[J]. Renewable and Sustainable Energy Reviews, 2001, 5(4): 343-372.
  • 6Longo, Giovanni A, Andrea Gaspareila Claudia Zilio. Analysis of an absorption machine driven by the heat recovery on an I C reciprocating engine[J]. International Journal of Energy Research, 2005, 29 (8) : 711-722.
  • 7Wang Jianzhao, Zheng Danxing. Performance of one and a half-effect absorption cooling cycle of H20/LiBr system [J]. Energy Conversion and Management, 2009, 50 (12) : 3087-3095.
  • 8Kanjanapon Chunnanond, Satha Aphornratana. Ejectors : Applications in refrigeration technology [J].Renewable and Sustainable Energy Reviews, 2004 , 8 (2) : 129-155.
  • 9Hong Daliang, Chen Guangming, Tang Liming, et al. A novel ejector-absorption eombined refrigeration cycle [J]. lnterantional Journal of Refrigeration, 2011, 34 (7) : 1596-1603.
  • 10Mirunalini Thirugnanasarnbandarn, Iniyan S, Ranko Goic, A review of solar thermal technologies[J]. Rettewable and Sustainable Energy Reviews, 2010, 14 (1): 312-322.

共引文献3

同被引文献6

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部