期刊文献+

高活性位点密度Fe-N共掺杂碳纳米片的制备及氧还原性能 被引量:3

Preparation and Oxygen Reduction Performance of Fe,N co-Doped Carbon Nanoplate with High Density of Active Sites
下载PDF
导出
摘要 从三聚氰胺和均苯四甲酸酐单体出发,通过熔融盐法合成了三嗪结构聚酰亚胺纳米片,借助类石墨相氮化碳(g-C3N4)与铁离子的配位作用,经高温热处理形成了高效掺杂的Fe-N/C催化剂.研究结果表明,该催化剂为表面粗糙的纳米片结构,比表面积高达1794 m^2/g.通过g-C3N4的引入和含量的调控,催化剂中铁元素的掺杂量最高可达1.13%(摩尔分数),为未引入g-C3N4的3.3倍,其原因可归结于g-C3N4配位锚定了铁离子,其较强的配位作用可以避免高温热处理时铁元素的迁移和聚集.该催化剂在酸性条件下氧还原反应半波电位为0.79V,10000周加速测试后的半波电位衰减了30mV,表现出较好的氧还原活性. Fe,N co-doped carbon nanoplate catalyst with high active sites was developed via methods of polymerization of triazine polyimide and carbonization within melting salt of ZnCl2/KCl with the aid of g-C3N4 to anchor Fe^3+.The as-prepared NPT-C3N4-0.5 catalyst displays high specific surface area of 1794 m^2/g.The iron atoms uniformly distribute in the carbon skeleton with an increased doping amount up to the molar percentage of 1.13%,3.3 times of the one without g-C3N4,which can be attributed to the coordination between g-C3N4 and iron to decrease its aggregation under high temperature.The catalyst exhibits excellent catalytic activity for oxygen reduction reaction(ORR)in acid media.Typically,the half-wave potential(E1/2)of the catalyst can reach up to 0.79V(vs.RHE)and only decreases by 30 mV after 10000 potential cycles of accelerated durability test in acid media,showing high activity towards ORR.
作者 殷雯婧 刘啸 钱汇东 邹志青 YIN Wenjing;LIU Xiao;QIAN Huidong;ZOU Zhiqing(Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201210,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2019年第7期1480-1487,共8页 Chemical Journal of Chinese Universities
基金 国家重点研究发展计划项目(批准号:2017YFA0206500) 国家自然科学基金(批准号:21673275,21533005,21872165)资助~~
关键词 非贵金属催化剂 氧还原反应 类石墨相氮化碳 配位作用 聚酰亚胺 Non-precious metal catalyst Oxygen reduction reaction Graphitic carbon nitride Coordination Polyimide
  • 相关文献

参考文献3

二级参考文献21

  • 1Wu G., More K. L., Johnston C. M., Zelenay P: Science[J], 2011,332(22) : 443-447.
  • 2ZHAQuan-Xing(查全性).电极过程动力学导论,第三版[M],Bering:SciencePress,2002:137,258.
  • 3Bezerra C. W. B. , Zhang L. , Lee K. , Liu H. , Zhang J. , Shi Z. , Marques A. L. B. , Marques E. P. , Wu S. , Zhang J: Electro- chim. Acta[J] , 2008, $3:7703-7710.
  • 4Jasinski R: Nature[ J] , 1964, 201:1212-1213.
  • 5Bezerra C. W. B. , Zhang L. , Lee K. , Liu H. , Marques A. L. B. , Marques E. P. , Wang H. , Zhang J: Electrochim. Acta[J], 2008, 53:4937-4951.
  • 6ZHANGHong(章虹),RENQi-Zhi(任奇志),HESheng-Yi(何盛一),WANGQing-Yu(王庆宇),JIANGZong-Run(蒋宗润).高等学校化学学报[J],2011,32(2):344-349.
  • 7Bashyam R. , Zelenay P: Nature[J] , 2006, 443(7) : 63-66.
  • 8Li S. , Zhang L. , Kim J. , Pan M. , Shi Z. , Zhang J: Electrochim. Acta[J] , 2010, 55:7346-7353.
  • 9Lefevre M. , Proietti E. , Jaouen F. , Dodelet J. P: Science[J] , 2009, 324(3) : 71-74.
  • 10Foumier J. , Lalande G., C6t6 R., Guay D., Dodelet J. P: J. Electrochem. Soc. [J], 1997, 144(1): 218-226.

共引文献16

同被引文献6

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部