摘要
针对利用抽象语义(AMR)图来预测摘要子图存在的语义结构不完整问题,该文提出一种基于整数线性规划(ILP)重构AMR图结构的语义摘要算法。首先将数据预处理生成一个AMR总图;然后基于统计特征从AMR总图中抽取出摘要子图重要节点信息;最后利用ILP的方法来对摘要子图中节点关系进行重构,利用完整的摘要子图恢复生成语义摘要。实验结果表明,相比其他语义摘要方法,所提方法的ROUGE值和Smatch值都有显著提高,最多分别提高了9%和14%,该方法有利于提高语义摘要的质量。
In order to solve the incomplete semantic structure problem that occurs in the process of using the Abstract Meaning Representation (AMR) graph to predict the summary subgraph,a semantic summarization algorithm is proposed based on Integer Linear Programming (ILP) reconstructed AMR graph structure.Firstly, the text data are preprocessed to generate an AMR total graph.Then the important node information of the summary subgraph is extracted from the AMR total graph based on the statistical features.Finally,the ILP method is applied to reconstructing the node relationships in the summary subgraph,which is further utilized to generate a semantic summarization.The experimental results show that compared with other semantic summarization methods,the ROUGE index and Smatch index of the proposed algorithm are significantly improved,up to 9% and 14% respectively.This method improves significantly the quality of semantic summarization.
作者
陈鸿昶
明拓思宇
刘树新
高超
CHEN Hongchang;MING Tuosiyu;IU Shuxin;GAO Chao(National Digital Switching System Engineering Technological Research Center,Zhengzhou 450002,China)
出处
《电子与信息学报》
EI
CSCD
北大核心
2019年第7期1674-1681,共8页
Journal of Electronics & Information Technology
基金
国家自然科学基金(61521003)
国家自然科学基金青年科学基金(61601513)~~
关键词
抽象语义图
语义摘要
摘要子图
语义结构
整数线性规划
Abstract Meaning Representation (AMR) graph
Semantic summarization
Summary subgraph
Semantic structure
Integer Linear Programming (ILP)