期刊文献+

基于机器学习的单线激光雷达进行车辆识别与跟踪方法研究 被引量:6

Machine Learning Based Vehicle Recognition and Tracking Using Single Layer LIDAR
下载PDF
导出
摘要 针对多线激光雷达应用于无人驾驶车辆的高额造价问题,提出了一种基于单线激光雷达作为主传感器,并利用机器学习方法实现车辆识别与跟踪任务。首先通过激光雷达扫描并获取空间轮廓数据,对每帧数据采用层次聚类算法进行目标分割;然后对每个目标进行特征提取,通过交叉验证和网格搜索对支持向量机的参数进行优化以实现更好的分类效果,采用卡尔曼滤波实现目标车辆的跟踪;最后在城市公路和高架桥上开展了数据采集的工作,使用了装备单线激光雷达和相机的乘用车作为实验平台,实验结果表明,所提取六种目标车辆特征值组成特征向量并配合参数优化后的支持向量机可以实现较高识别率,并可实现对目标车辆的稳定跟踪。 Considering the high cost of multi-layer LIDAR application for unmanned vehicles,in this paper,a vehicle detection and tracking method based on single-layer LIDAR using machine learning techniques is proposed. Firstly,the spatial profile data is acquired by LIDAR scaning. And then hierarchical clustering algorithm is applied to divide the target data for each frame. Furthermore,the features are extracted and the optimized parameters of Support Vector Machine(SVM) are found through cross validation and grid search to achieve better classification results. The Kalman filter is used to track the target vehicle. Finally,a passenger vehicle OptoBot-IV which is equipped with a single-layer LIDAR and a camera is driven on the urban area for the data collection. The experimental results show that this approach can achieve a reasonable high recognition accuracy and achieve stable tracking of the object vehicles.
作者 刘伟 王世峰 公大伟 王泽 王锐 LIU Wei;WANG Shifeng;GONG Dawei;WANG Ze;WANG Rui(School of Optoelectronic Engineering,Changchun University of Science and Technology,Changchun 130022)
出处 《长春理工大学学报(自然科学版)》 2019年第3期51-56,64,共7页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 吉林省自然科学基金项目(20150101047JC)
关键词 机器学习 网格搜索 支持向量机 卡尔曼滤波 machine learning hierarchical clustering grid search support vector machine kalman-filter
  • 相关文献

参考文献7

二级参考文献69

  • 1张玲,韩建,何伟,唐仁圣.基于自适应模板的匹配算法在跟踪系统中的应用[J].重庆大学学报(自然科学版),2005,28(6):74-76. 被引量:3
  • 2洪亮,陈昆山.交通事故现场三维数字化信息的获取及再现[J].拖拉机与农用运输车,2010,37(6):60-63. 被引量:6
  • 3顾广华,崔冬.全局运动序列的视频对象分割算法[J].仪器仪表学报,2007,28(1):128-131. 被引量:11
  • 4胡建华,徐健健.交通监控系统中车辆和行人的检测与识别[J].电子测量技术,2007,30(1):16-17. 被引量:13
  • 5韩家炜,坎伯.数据挖掘概念与技术[M].范明,孟小峰译.北京:机械工业出版社.2000.
  • 6Spengler M,Schiele B.Towards robust multi-cue integration for visual tracking[J].Machine Vision and Applications,2003,14(1):50-58.
  • 7Comaniciu D,Ramesh V,Meer P.Real-time tracking of non-rigid objects using mean shift[C].In Proc of the IEEE Conference on Computer Vision and Pattern Recognition,Hilton Head Island,South Carolina,2000,Ⅱ:142-149.
  • 8Comaniciu D,Ramesh V.Mean shift and optimal prediction for efficient object tracking[C]In Proc of the IEEE International Conference on Image Processing,Vancouver,Canada,2000,Ⅲ:70-73.
  • 9Daubechies I,Sweldens W.Factoring wavelet transforms into lifting steps[R].Technical report,Bell Laboratories,Lucent Technologies,1998.
  • 10Calderbank A R,Daubechies I,Sweldens W,et al.Wavelet transforms that map integers to integers[R].Technical report,Department of Mathematics,Princeton University,1996.

共引文献102

同被引文献49

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部