期刊文献+

调和拟凸函数带参数的Hadamard型分数次积分不等式 被引量:1

Hadamard Type Fractional Integral Inequalities with Parameter for Harmonically Quasi-convex Functions
下载PDF
导出
摘要 先建立一个带参数的Riemann-Liouville分数次积分恒等式,再根据该恒等式,利用幂均不等式和Hlder不等式建立一些涉及Riemann-Liouville分数次积分,并关于调和拟凸函数且带参数的Hermite-Hadamard型分数次积分不等式。 First,the author established a Riemann-Liouville fractional integral identity with parameter. Then,according to the identity,some Hermite-Hadamard type fractional integral inequalities with parameter for harmonically quasi-convex functions invo lving Riemann-Liouville fractional integral were established by using power mean inequality and H lder inequality.
作者 孙文兵 SUN Wenbing(School of Science,Shaoyang University,Shaoyang 422000,Hunan Province,China)
机构地区 邵阳学院理学院
出处 《吉林大学学报(理学版)》 CAS 北大核心 2019年第4期803-808,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:61672356) 湖南省教育厅青年项目(批准号:18B433) 邵阳市科技计划项目(批准号:2017GX09)
关键词 HADAMARD不等式 参数 调和拟凸函数 Riemann-Liouville分数次积分 Hadamard’ s inequality parameter harmonically quasi-conv ex function Riemann-Liouville fractional integral
  • 相关文献

参考文献3

二级参考文献15

  • 1Alomari M, Darus M. On the Hadaraard's inequality for log-convex functions on the coordinateds. J Ineq Appl, 2009, 2009: Article ID 283147, 13 pages.
  • 2Belarbi S, Dahmani Z. On some new fractional integral inequalities. J Ineq Pure Appl Math, 2009, 10(3): Art. 86.
  • 3Dahmani Z. New inequalities in fractional integrals. Int J Nonlinear Science, 2010, 9(4): 493-497.
  • 4Dahmani Z. On Minkowski and Hermite-Hadamard integral inequalities via fractional integration. Ann Fhnct Anal, 2010, 1(1): 51-58.
  • 5Dahmani Z, Tabharit L, Taf S. Some fractional integral inequalities. Nonl Sci Lett A, 2010, 1(2): 155-160.
  • 6Dahmani Z, Tabharit L, Tar S. New generalizations of Gruss inequality using Riemann-Liouville fractional integrals. Bull Math Anal Appl, 2010, 2(3): 93-99.
  • 7Dragomir S S, Pearce C E M. Selected Topics on Hermite-I-Iadamard Inequalities and Applications. RGMIA Monographs Victoria University, 2000.
  • 8Dragomir S S Agarwal R P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl Math Lett, 1998,11(5): 91 -95.
  • 9Klrmacl U S, Bakula M K, ()zdemir M E, Peari5 J. Hadamard-type inequalities for s-convex functions. Appl Math Comp, 2007, 193:26-35.
  • 10Ozdemir M E, KlrmaciU S. Two new theorem on mappings uniformly continuous and convex with appli- cations to quadrature rules and means. Appl Math Comp, 2003, 143:269-274.

共引文献9

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部