期刊文献+

椭圆型交换四元数矩阵的实表示及逆矩阵求法

Real Representation and Inverse Matrix of Elliptic Commutative Quaternion Matrix
下载PDF
导出
摘要 在引入椭圆型交换四元数的基础上,首先证明了椭圆型交换四元数和实数域上的4阶矩阵是同构的,将对椭圆型交换四元数的研究转化为实数域上4阶矩阵的研究.其次,利用椭圆型交换四元数矩阵的实表示,将对椭圆型交换四元数矩阵的研究转化为实数域上4n阶矩阵的研究,得到了椭圆型交换四元数矩阵实表示的系列重要性质.最后,利用实表示的性质,得到椭圆型交换四元数矩阵特征值存在的充要条件,并给出椭圆型交换四元数矩阵逆矩阵的求法,且利用数值算例验证了结论的有效性. Based on the introduction of elliptic commutative quaternion, firstly, it is proved that the elliptic commutative quaternion and the 4-order matrix on the real field are isomorphic. The study of the elliptic commutative quaternion is transformed into the study of the 4-order matrix on the real field. Secondly, using the real representation of the elliptic commutative quaternion matrix, the study of the elliptic commutative quaternion matrix is transformed into the study of the 4 n -order matrix on the real field. A series of important properties of real representation of elliptic commutative quaternion matrix are obtained. Finally, based on the real representation properties, the sufficient and necessary conditions for the existence of the eigenvalues of the elliptic commutative quaternion matrix are obtained. The method to find the inverse matrix of the elliptic commutative quaternion matrix is given. And the correctness of the result is verified by a numerical example.
作者 孔祥强 KONG Xiang-qiang(Dept. of Mathematics and Statistics, Heze University, Heze 274015, China)
出处 《中北大学学报(自然科学版)》 CAS 2019年第5期390-395,406,共7页 Journal of North University of China(Natural Science Edition)
基金 山东省自然科学基金资助项目(ZR201709250116,ZR2017MA029) 菏泽学院科研基金科技计划资助项目(XY17KJ02) 菏泽学院大学数学课程“线上”+“线下”混合式教学模式研究与实践资助项目(2018311)
关键词 椭圆型交换四元数矩阵 实表示 特征值 逆矩阵 elliptic commutative quaternion matrix real representation eigenvalue inverse matrix
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部