摘要
车辆行驶过程中由于簧载质量及减振器温度的变化,悬架参数并不是固定不变的,在悬架的控制中需要对悬架参数进行辨识。首先建立二自由度悬架动力学模型,然后建立运动微分方程,在微分方程中加入滤波器得到仅包含加速度信号的输入输出方程。通过四分之一台架试验得到簧上簧下质量的加速度信号,基于递推最小二乘算法使用五个滤波器自然频率及五个滤波器阻尼比对悬架参数分别进行辨识,得到悬架辨识质量、辨识阻尼、最佳滤波器自然频率范围以及最佳滤波器阻尼比范围。通过加入滤波器,采用各加速度信号为输入,在悬架辨识中使得信号的采集更加简单。
During the course of the vehicle, the suspension parameters are not fixed due to the change of the sprung mass and the temperature of the damper. The suspension parameters need to be identifiedin the control of suspension. Based on the identification of the suspension parameters, the kinetic model of the two-degree-of-freedom suspension is established, and then the differential equation of motion is established. The input and output equations containing the acceleration signal are obtained by adding the filter to the differential equation. The acceleration signals of the unsprung mass and sprung massare obtained by a quarter of the bench test. Based on the recursive least squares algorithm, the five filter natural frequencies and five filter damping ratios are used to identify the suspension parameters respectively. Identification of the mass, identification of damping, the best filter natural frequency range and the best filter damping ratio range are obtained. By adding the filter, the use of the acceleration signal for the input, in the suspension identification makes the signal acquisition more simple.
作者
赵卫鹏
孙晋伟
桑志国
顾亮
ZHAO Wei-peng;SUN Jin-wei;SANG Zhi-guo;GU Liang(Vibration and Noise Control Laboratory,School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081,China)
出处
《机械设计与制造》
北大核心
2019年第7期89-91,95,共4页
Machinery Design & Manufacture
关键词
参数辨识
递推最小二乘算法
滤波器
质量
Parameter Identification
Recursive Least Squares Algorithm
Filter
Mass