期刊文献+

基于行车记录仪的高速公路路面状况巡查及报警系统 被引量:5

Expressway Pavement Patrol and Alarm System Based on Traffic Recorder
下载PDF
导出
摘要 为解决目前路面破损状态自动检测采用专用摄影检测车检测费用高、检测结果需要专业软件分析不易普及应用的问题,提出一种基于行车记录仪的路面破损状况识别方法。以行车记录仪采集的视频图片、GPS数据为基础,建立基于行车记录仪图片的高速公路路面状况巡查及报警系统,实现路面破损状况识别及报警。系统利用行车记录仪采集的图片,基于卷积神经网络的深度学习算法,实现路面的破损自动识别;利用行车记录仪GPS定位数据以及GIS电子地图,实现行车记录仪图片的GIS地图实时显示及报警。 In order to solve the problems of high cost of auto-detection of pavement damage status using special photographic inspection vehicle and the difficulty of popularization and application of professional software analysis for detection results, a method of pavement damage status identification based on traffic recorder is proposed. Based on the video pictures and GPS data collected by the traffic recorder, a highway pavement condition inspection and alarm system based on the traffic recorder pictures is established to realize the recognition and alarm of pavement damage. The system uses the images collected by the traffic recorder and the deep learning algorithm based on convolution neural network to realize the automatic recognition of road surface damage. The system uses the GPS positioning data of the traffic recorder and the electronic map of GIS to realize the real-time display and alarm of the GIS map of the traffic recorder pictures.
作者 张月 ZHANG Yue(Hebei Qu Gang Expressway Development Co.,Ltd.,Dingzhou 073000,China)
出处 《交通与运输》 2019年第4期54-57,共4页 Traffic & Transportation
基金 曲港高速公路智慧运营及管养辅助决策支持系统关键技术研究项目资助
关键词 高速公路 行车记录仪 路面破损检测 卷积神经网络 巡查及报警系统 Highway Traffic recorder Pavement damage detection Convolution Neural Network Patrol and alarm system
  • 相关文献

参考文献1

二级参考文献7

  • 1丁爱玲,焦李成.基于支撑矢量机的路面破损识别[J].长安大学学报(自然科学版),2007,27(2):34-37. 被引量:17
  • 2Jasper W J, Gamier S J, Potapalli H. Texture char acterization and defect detection using adaptive wave lets[J]. IEEE Transactions on Industry Applica tions, 1996,35(9): 3 140-3 149.
  • 3Chan Chiho, Pang K H G. Fabric defect detection by fourier analysis[J]. IEEE Transactions on Industry Applications, 2000,36(5): 1 267-1 276.
  • 4Tsai Du Ming, Huang Tse Yun. Automated surface inspection for statistical textures[J]. Image and Vision Computing, 2003,21(4): 307 -323.
  • 5高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2005.
  • 6张娟,沙爱民,孙朝云,高怀钢.基于相位编组法的路面裂缝自动识别[J].中国公路学报,2008,21(2):39-42. 被引量:41
  • 7王荣本,王超,初秀民.路面破损图像识别研究进展[J].吉林大学学报(工学版),2002,32(4):91-97. 被引量:37

共引文献8

同被引文献35

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部