摘要
针对目前电力仓库视频监控图像中目标检测算法对小目标物体、部分遮挡及尺寸大小不一存在检测难度大、漏检、错检等问题,提出基于Faster R-CNN的仓库视频监控目标检测方法,实现电力仓库视频监控中目标分类与识别及仓库智能化监控,保护仓库安全。实验结果表明,该方法提高了目标识别的准确度(mAP),减少了目标物体识别时间。
Aiming at the problems of difficult detection,missed detection and wrong detection of small target objects,partial occlusion and different sizes in video surveillance image of power warehouse,an object detection method based on Faster R-CNN for video monitoring of power warehouse is proposed,which realizes object classification and recognition in video monitoring of power warehouse video surveillance and intellectualized warehouse monitoring and protects warehouse security. The experimental results show that the method improves the accuracy of object recognition(mAP)and reduces the object recognition time.
作者
王纪军
靖慧
冯曙明
杨永成
潘晨溦
WANG Ji-jun;JING Hui;FENG Shu-ming;YANG Yong-cheng;PAN Chen-wei(Jiangsu Electric Power Information Technology Co.,Ltd.,Nanjing 210000,China;Nanjing University of Finance and Economics,Nanjing 210000,China)
出处
《信息技术》
2019年第7期92-96,共5页
Information Technology