期刊文献+

基于Faster R-CNN的仓库视频监控目标检测方法研究 被引量:5

Object detection method of video monitoring in power warehouse based on Faster R-CNN
下载PDF
导出
摘要 针对目前电力仓库视频监控图像中目标检测算法对小目标物体、部分遮挡及尺寸大小不一存在检测难度大、漏检、错检等问题,提出基于Faster R-CNN的仓库视频监控目标检测方法,实现电力仓库视频监控中目标分类与识别及仓库智能化监控,保护仓库安全。实验结果表明,该方法提高了目标识别的准确度(mAP),减少了目标物体识别时间。 Aiming at the problems of difficult detection,missed detection and wrong detection of small target objects,partial occlusion and different sizes in video surveillance image of power warehouse,an object detection method based on Faster R-CNN for video monitoring of power warehouse is proposed,which realizes object classification and recognition in video monitoring of power warehouse video surveillance and intellectualized warehouse monitoring and protects warehouse security. The experimental results show that the method improves the accuracy of object recognition(mAP)and reduces the object recognition time.
作者 王纪军 靖慧 冯曙明 杨永成 潘晨溦 WANG Ji-jun;JING Hui;FENG Shu-ming;YANG Yong-cheng;PAN Chen-wei(Jiangsu Electric Power Information Technology Co.,Ltd.,Nanjing 210000,China;Nanjing University of Finance and Economics,Nanjing 210000,China)
出处 《信息技术》 2019年第7期92-96,共5页 Information Technology
关键词 目标检测 卷积神经网络 FASTER R-CNN 视频监控 电力仓库 object detection convolutional neural network Faster R-CNN video monitoring power warehouse
  • 相关文献

参考文献5

二级参考文献22

共引文献87

同被引文献50

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部