期刊文献+

基于稀疏特征的SAR影像质量提高方法

Improvement Method of the SAR Image Quality Based on Sparse Feature
下载PDF
导出
摘要 针对合成孔径雷达(SAR)数据分布的尖峰性和重尾性,通过研究SAR影像强度的分布规律,提出了基于稀疏特征的SAR影像质量提高方法。首先对SAR影像的基础数据进行压缩分布处理和稀疏先验分布处理,得到质量较好的灰度影像;再利用基于模糊理论的SAR影像对比度增强算法增强了SAR影像的自适应对比度,大幅提升SAR影像的显示效果;最后利用实测数据验证了该方法的有效性。 Aiming at the spikes and heavy tailed features of SAR data distribution, according to the distribution rules of SAR image intensity, we presented a SAR image quality improvement method based on sparse feature in this paper. Firstly, we made the compress distribution processing and the sparse prior distribution processing for the SAR image basic data to obtain the gray-scale images with good quality. Then, we used SAR image contrast enhancement algorithm based on fuzzy theory to enhance the contrast of SAR images, which could improve the SAR image display effect significantly. Finally, we used the measured data to verify this method.
作者 花奋奋 孙祥杰 王召许 HUA Fenfen
出处 《地理空间信息》 2019年第7期53-56,I0002,共5页 Geospatial Information
基金 中煤航测遥感集团有限公司科技创新资助项目(HT-2016-01)
关键词 SAR SAR影像处理 影像压缩 对比度增强 SAR SAR image processing image compression contrast enhancement
  • 相关文献

参考文献1

二级参考文献10

  • 1周宏潮,朱炬波,王正明.SAR图像增强的前向-后向扩散方程方法[J].电子学报,2004,32(12):2070-2073. 被引量:6
  • 2谢美华,王正明.基于正则化变分模型的SAR图像增强方法[J].红外与毫米波学报,2005,24(6):467-471. 被引量:12
  • 3魏钟铨.合成孔径雷达卫星,2001.
  • 4邹谋炎.反卷积和信号复原,2001.
  • 5张澄波.综合孔径雷达--原理、系统分析和应用,1989.
  • 6Mujdat Cetin;W C Karl.A Statistical Topographic Approach to Synthetic Aperture Radar Image Reconstruction,1997.
  • 7Mujdat Cetin;W C Karl;D A Castanon.Evaluation of a Regularized SAR Imaging Technique Based on Recognition-Oriented Features[C],2000.
  • 8D L Donoho.Sparse Components of Images and Optical Atomic Decompositions,1998.
  • 9Xuejun Liao;Zheng Bao.Radar Target Recognition Using Superresolution Range Profiles as Feature[J],1998.
  • 10Mujdat Cetin;W C Karl.Feature-Enhanced Synthetic Aperture Radar Image Formation Based on Non-Quadratic Regularization[J],2001(04).

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部