期刊文献+

基于Aspen Adsorption的氦气/甲烷吸附分离过程模拟优化 被引量:6

Optimization of helium/methane adsorption separation process based on Aspen Adsorption simulation
下载PDF
导出
摘要 工业氦气主要通过深冷、膜分离和变压吸附(PSA)耦合从天然气提取,其中PSA是获得高纯He的关键。吸附过程模拟可以克服实验局限,有效指导工程设计、优化工艺条件。以体积分数90%的粗He为原料,利用AspenAdsorption软件建立He/CH4单塔PSA模型,获得穿透曲线。以此为基础,建立双塔分离流程,分析吸附、顺放、逆放、冲洗、升压步骤中吸附塔内气相组成的变化,五步最佳操作时间分别为60、180、30、60和180s。在三塔流程中,一个循环周期的最佳吸附时间和均压时间分别为135s和90s,产品纯度可达98.42%,回收率达60.45%。在五塔流程中,考虑到各步骤时间的匹配及生产的连续性,需要对一个周期内的循环时间进行优化。循环时间为300~340s时,产品纯度达到99.07%以上。 Industrial helium is mainly extracted from natural gas by cryogenic, membrane separation and pressure swing adsorption(PSA) coupling of which PSA is the key to obtain high purity helium. It is helpful to overcome experimental limitations via adsorption process simulation, which can effectively guide engineering design and optimize process conditions. A helium/methane single-column pressure swing adsorption model was established by Aspen Adsorption software to obtain breakthrough curves. Based on the results, a two-column PSA process was established. The optimal operation time of adsorption, forward, reverse, flush, and boost step is 60, 180, 30, 60 and 180 s, through analyzing the changes of the gas phase composition in the adsorption column. In three-column PSA process, the optimal time of adsorption and pressure equalization for one cycle are 135 s and 90 s, helium purity can reach 98.42% and the recovery is up to 60.45%. It is necessary to optimize the cycle time in one cycle by considering the matching of each step time and the continuity of production in five-tower PSA process. When cycle time is between 300 s and 340 s, purity of helium reaches 99.07%.
作者 肖永厚 肖红岩 李本源 秦剑亮 邱爽 贺高红 XIAO Yonghou;XIAO Hongyan;LI Benyuan;QIN Jianliang;QIU Shuang;HE Gaohong(Panjin Industrial Technology Institute, Dalian University of Technology, Panjin 124221, Liaoning, China;School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin 124221, Liaoning, China)
出处 《化工学报》 EI CAS CSCD 北大核心 2019年第7期2556-2563,共8页 CIESC Journal
基金 国家自然科学基金项目(21776028) 辽宁省重点研发计划(2017308004) 大连理工大学盘锦产业技术研究院项科技研发项目(PJYJY2016A006)
关键词 吸附 氦气 过程模拟 优化 adsorption helium process simulation optimization
  • 相关文献

参考文献6

二级参考文献45

  • 1费维扬,艾宁,陈健.温室气体CO_2的捕集和分离——分离技术面临的挑战与机遇[J].化工进展,2005,24(1):1-4. 被引量:174
  • 2瞿国华.炼厂用氢的低成本战略探讨[J].石油化工技术经济,2007,23(2):19-22. 被引量:27
  • 3薛荣书.化工工艺学[M].重庆:重庆大学出版社,2004:312.
  • 4化工部第四设计院.深冷手册[M].北京:化学工业出版社,1973:271-273.
  • 5陈尧焕,李鹏.中国石化加氢裂化装置运行分析[J].炼油技术与工程,2007,37(10):1-4. 被引量:14
  • 6FeiWeiyang(费维扬),AiNing(艾宁),ChenJian(陈健).Capture and separation of greenhouse gases C02-thechallenge and opportunity for separation technology [ J]. Chemical Industry and Engineering Progress , 2002, 24 (1) 1-4.
  • 7张辉,刘应书,刘文海,张德鑫,翟晖.变压吸附制氧机吸附器结构研究进展[J].化工进展,2007,26(11):1602-1609. 被引量:34
  • 8KRISHNAMURTHY S, RAO V R, GUNTUKA S. CO2 capture from dry flue gas by vacuum swing adsorption: a pilot plant study [J]. AIChE Journal, 2014, 60(5): 1830-1842.
  • 9AGARWAL A, BIEGLER L T, ZITNEY S E. A superstructure-based optimal synthesis of PSA cycles for post-combustion CO2 capture [J]. AIChE Journal, 2010, 56(7): 1813-1828.
  • 10DOWLING A W, VETUKURI S R R, BIEGLER L T. Large-scale optimization strategies for pressure swing adsorption cycle synthesis [J]. AIChE Journal, 2012, 58(12): 3777-3791.

共引文献57

同被引文献42

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部