摘要
目的调查某市两家三级甲等专科医院临床护士的工作满意度现状并对影响因素进行回归分析。方法 2017年7—10月通过电子问卷对两家三级甲等专科医院的临床护士进行整群抽样调查,采用SPSS20. 0数据分析软件进行分析。结果一共995名护士参与调查,工作满意度总均分为(4. 43±0. 78)分,标准分为88. 70分,处于良好水平;各维度得分中最高项为对领导满意,最低项为参与管理的满意度,不同人口学特征护士工作满意度不同,差异有统计学意义(P<0. 05),分层回归分析显示护士工作满意度主要影响因素包括年龄、心理弹性、组织文化感知(P<0. 001)。结论护理管理者需关注护士年龄特征,探索分层培训及护士心理弹性训练,注重组织文化建设,营造积极乐观的护理执业环境,全面提升临床护士的工作满意度。
Objective To investigate the status of the nurses.. job satisfaction in two tertiary class A hospitals in a city and regression analyze the influencing factors. Methods From July to October 2017, nurses working in two tertiary class A specialized hospitals were investigated by cluster sampling. The data were analyzed by SPSS20. 0 software. Results A total of 995 nurses participated in the survey, the total average score of job satisfaction was (4. 43±0. 78) points, and the standard score was 88. 70, at a good level. The highest score was for the leadership satisfaction, the lowest score was to participate in the management. Nurses.. job satisfaction with different demographic characteristics were significantly different(P<0. 05). Layering regression analysis showed that the key influencing factors of nurses.. job satisfaction including age, resilience, perceived organizational culture ( P < 0. 001). Conclusion Nursing managers should pay attention to nurses.. age characteristics to explore the training of hierarchical training and resilience training, build the organizational culture, create a positive and optimistic nursing practice environment, and comprehensively improve nurses' job satisfaction.
作者
李玉梅
黄瑛
毛燕君
LI Yumei;HUANG Ying;MAO Yanjun(Nursing Department, Shanghai Pulmonary Hospital Affiliated toTongji University, Shanghai 200433)
出处
《解放军医院管理杂志》
2019年第6期505-508,521,共5页
Hospital Administration Journal of Chinese People's Liberation Army
基金
中国生命关怀协会人文护理专委会科研项目(RW2016AM17)
上海市卫生和计划生育系统“人文关怀心理疏导”培育项目
中华医学会医学教育分会中国高等教育学会医学教育专业委员会2018年医学教育研究立项课题(2018B-N14002)
关键词
护士
工作满意度
心理弹性
组织文化
影响因素
回归分析
nurses
job satisfaction
resilience
organizational culture
influencing factor
regression analysis