期刊文献+

高压下L10-FePd晶态合金的晶格动力学和弹性 被引量:1

Lattice Dynamics and Elasticity of the L10-FePd Crystalline Alloy under High Pressure
下载PDF
导出
摘要 利用密度泛函理论结合晶格动力学理论研究二元晶态合金L10-FePd在压力诱导下的声子谱和声子态密度、弹性模量、泊松比.在0GPa下,考虑电子自旋极化的L10-FePd晶态合金的声子谱在整个布里渊区没有出现虚频,这说明具有铁磁性的L10-FePd晶态合金处于动力学稳定状态.具有L10-FePd晶态合金没有声子谱带隙,说明L10-FePd晶态合金延展性较好.在布里渊区的G点处纵向光学支声子(LO)与横向光学支声子(TO)出现了简并现象,说明体系中存在库仑长程静电交换相互作用.分析体系的弹性模量的变化与泊松比和B/G随压力的变化规律,发现具有铁磁性的L10-FePd晶态合金随压力的增大延展性较好. The phonon spectra,phonon state density,elasticity modulus and Poisson′s ratio of L1 0-FePd crystalline alloy under pressure induction were studied by density functional theory and lattice dynamic theory.The phonon spectrum of the L1 0-FePd crystalline alloy with conceding the electron spin polarization have no imaginary frequency throughout the Brillouin zone at 0 GPa. The results show that the ferromagnetic L1 0-FePd crystalline alloy is in a state of dynamic stability. The L1 0-FePd crystalline alloy has no phonon frequency gap,indicating that the L1 0-FePd crystalline alloy has good ductility. The longitudinal optical phonons (LO) and the transverse optical phonons (TO) at the G-point of the Brillouin zone are degenerate,indicating that long range Coulomb electrostatic exchange interaction in the system. It was found that the L1 0-FePd crystalline alloy with ferromagnetism has better ductility with increasing pressure.
作者 徐策 成泰民 禹国梁 XU Ce;CHENG Tai-min;YU Guo-liang(School of Materials Science and Engineering,Shenyang University of Chemical Technology, Shenyang 110142,China;Department of Mathematics and Physics,Shenyang University of Chemical Technology,Shenyang 110142,China)
出处 《沈阳化工大学学报》 CAS 2019年第2期188-192,共5页 Journal of Shenyang University of Chemical Technology
基金 国家自然科学基金面上项目(11374215)
关键词 晶格动力学 弹性模量 延展性 声子谱虚频 lattice dynamics elastic modulus ductility imaginary frequency of the phonon spectra
  • 相关文献

参考文献4

二级参考文献50

  • 1周磊,金自力,张羊换,王新林.铁钴基软磁材料合金化的研究进展[J].金属功能材料,2006,13(6):37-41. 被引量:19
  • 2Nataf L, Decremps F, Gauthier M, Canny B 2006 Phys. Rev. B 74 184422.
  • 3Xu J H, Oguchi T 1987 Phys. Rev. B 35 6940.
  • 4Ravindran P, Subramoniam G, Asokamani R 1996 Phys. Rev. B 53 1129.
  • 5Ravindran P, Asokamani R 1994 Phys. Rev. B 50 668.
  • 6Wassermann E F, Schubert N, Kktner J, Rellinghaus B 1995 J. Magn. Magn. Mater. 140-144 229.
  • 7Endoh Y 1979 J. Magn. Magn. Mater. 10 177.
  • 8Tajima K, Endoh Y, Ishikawa Y 1976 Phys. Rev. Lett. 37 519.
  • 9Noda Y, Endoh Y 1988 J. Phys. Soc. Jpn. 57 4225.
  • 10Ishikawa Y, Ondera S, Tajima K 1979 J. Magn. Magn. Mater. 10 183.

共引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部