摘要
随着认知无线电(CR)技术的发展,协作认知无线电网络(CCRN)成为提高频谱利用效率和解决频谱稀缺问题的有效途径。而且,无线通信系统中的过度能量消耗已变得越来越重要。能量采集(EH)被认为是缓解此类问题的有效解决方案。然而,由于自然能量的随机性和间断性,从自然能源采集的能量不能保证EH网络中令人满意的服务质量(QoS)。混合能源供应已经成为解决不稳定电力供应问题的一种新模式,这意味着,这样的网络是由固定电源能量和采集能量共同提供动力。提出了一种新的混合能量供应认知无线电网络协作频谱租借方案。主用户(PU)雇佣次用户(SUs)作为协作中继,SUs通过从PU的RF信号中采集的能量来帮助PU传输数据,作为回报,PU授予SU接入信道的权利。PU的目标是通过与SUs合作来最大化其收益并节约自身能源,而SU旨在最大化其吞吐量和能源利用率。将此模式制定为Stackelberg博弈。最后,通过遗传算法解决了PU和SU在定价和频谱租借中的最优策略问题。
With the development of cognitive radio (CR)technologies,cooperative cognitive radio network (CCRN)become a promising approach to increase the efficiency of spectrum utilization and solve spectrum scarcity. Moreover,the excessive energy consumption in wireless communication system has been increasingly critical. Energy harvesting(EH)is considered as a effective solution to alleviate such issue. However,with intermittent and random energy arrivals,the energy harvested from natural energy source cannot guarantee satisfactory quality of service (QoS)in EH networks. Hybrid energy supplies have emerged as a new paradigm for solving unstable power supply problems,which means the network is powered by both electric grid energy and harvested energy. In this paper,we propose a novel cooperative spectrum leasing scheme for cognitive radio networks with hybrid energy supplies. Primary user (PU)recruit secondary users(SUs)to cooperatively relay the primary traffic by harvested energy extracted from RF signal of PU,and in return grant the SUs the right to access the channel. In such a scenario,PU aims to maximize its revenue and save it's energy by cooperating with the SUs,while the SUs tries to maximize its throughput and utilization of energy. We formulate this mode as a Stackelberg game. At last,we solved the optimal strategy of PU and SUs on the pricing and spectrum renting by Genetic Algorithm.
作者
刘爱民
曾凡仔
陈嘉贝
LIU AI-MIN;ZENG Fan-zi;CHEN Jia-bei(Chenzhou Vocational Technical College,Chenzhou,Hunan 423000,CHina;College of Computer Science and Electronic Engineering,Hunan University,Changsha,Hunan 410082,China)
出处
《计算技术与自动化》
2019年第1期88-95,共8页
Computing Technology and Automation
基金
国家自然科学基金资助项目(61772184)