期刊文献+

基于距离统计的有序纹理点云离群点检测 被引量:1

Outlier Detection Based on Distance Statistics for Ordered Texture Point Cloud
下载PDF
导出
摘要 三维数据的离群点检测是纹理点云数据处理的重要内容之一,为了有效快速地检测离群点,根据纹理点云的有序结构特征,提出了基于距离统计的检测算法。首先在每个点到其K邻域中其他点距离的基础上计算出K邻域距离;然后根据有序点云中该距离符合正态分布的特点和正态分布3σ定理,将超出3倍方差范围的点认定为离群点。实验结果显示算法采用曼哈顿-最大距离进行检测,当K为4时可以更加快速准确地将有序点云中的离群点检测出来。由此得出,基于距离统计的算法可以有效地将离群点检测出来,同时成功地应用于纹理点云的离群点检测。 3D outlier detection is an important processing of texture point cloud,in order to effectively detect the outlier quickly, a outlier detection method based on distance statistics is proposed,according to the ordered structure characteristic of texture point cloud. K neighborhood distance of every point is calculated by the distances between the point and its every K neighborhood point firstly;and then as the K neighborhood distance of ordered point cloud follow the normal distribution and the normal distribution 3σ theorem,the point will be detected as outlier point if its K neighborhood distance is beyond 3σrange. The result of experiments show that the proposed method can more quickly and accurately to detect outlier,if Manhattan-Maximum distance is adapted and K is 4. The conclusion is that the outlier detection method based on distance statistics can effectively detect outliers,and is applied on texture point cloud successfully.
作者 黄旺华 王钦若 HUANG Wang-hua;WANG Qin-ruo(School of Automation,Guangdong University of Technology,Guangzhou,Guangdong 510006,China)
出处 《计算技术与自动化》 2019年第1期139-144,共6页 Computing Technology and Automation
关键词 离群点检测 距离统计 K邻域距离 正态分布3σ定理 有序点云 outlier detection distance statistics K neighborhood distance normal distribution 3σ theorem ordered point cloud
  • 相关文献

参考文献4

二级参考文献96

  • 1文俊浩,吴中福,吴红艳.空间孤立点检测[J].计算机科学,2006,33(5):186-187. 被引量:5
  • 2杨宜东,孙志挥,朱玉全,杨明,张柏礼.基于动态网格的数据流离群点快速检测算法[J].软件学报,2006,17(8):1796-1803. 被引量:22
  • 3田青.斑马身上的条纹[J].山西农业(畜牧兽医版),2007(2):47-47. 被引量:1
  • 4汪加才,张金城,江效尧.一种有效的可视化孤立点发现与预测新途径[J].计算机科学,2007,34(6):200-203. 被引量:5
  • 5薛安荣,鞠时光.基于空间约束的离群点挖掘[J].计算机科学,2007,34(6):207-209. 被引量:12
  • 6赵科平,周水庚,关佶红,等.一种新的离群数据对象发现方法∥中国人工智能学会第10届全国学术年会论文集.北京:北京邮电大学出版社,2003.
  • 7Aggarwal C C, Yu P. Outlier detection for high dimensional dataft Proc. of the ACM SIGMOD International Conference on Management of Data. Santa Barbara, 2001:37-47
  • 8Angiulli F, Pizzuti C. Outlier Mining in Large High Dimensional Data Sets. IEEE Trans. Knowledge and Data Eng. , 2005, 2 (17) :203-215
  • 9Angiulli F, Basta S, Pizzuti C. Distance-based detection and prediction of outlier. IEEE Trans. Knowledge and Data Eng. , 2006, 2(18): 145-160
  • 10Aggarwal C C. Re - designing Distance Functions and Distance - based Applications for High Dimensional Data. SIGMOD Record Date, 2001, 30(1):13-18

共引文献165

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部