摘要
为了解决虚拟设备资源利用率低,能源消耗高等问题,设计了基于机器学习的虚拟设备决策算法.首先利用机器学习提出虚拟设备决策的优化算法,将机器学习与传统虚拟设备决策算法结合提出了基于机器学习的虚拟设备决策算法优化,解决了设备受资源限制的问题.然后利用机器学习技术中的DQN算法完成对虚拟设备决策算法的实现,通过系统自主学习,分析用户需求及软硬件环境,提出多种虚拟设备配置方案,最后经过系统对比选择出符合用户需求,同时资源消耗最优的虚拟设备配置方案.
In order to solve the problems of low resource utilization and high energy consumption of virtual equipment,a decision-making algorithm of virtual equipment based on machine learning is designed.Firstly,an optimization algorithm for virtual equipment decision-making is proposed based on machine learning,which combines machine learning with traditional virtual equipment decision-making algorithm and solves the problem of equipment resource constraints.Then,the DQN algorithm in machine learning technology is used to implement the decision-making algorithm of virtual equipment.Through the system autonomous learning,the user needs software and hardware environment are analyzed,and a variety of virtual equipment configuration schemes are proposed.Finally,through the system comparison,the virtual equipment configuration scheme which meets the user needs and consumes optimal resources is selected.
作者
李明东
李雪竹
卢彪
LI Ming-dong;LI Xue-zhu;LU Biao(School of Electronic Information Engineering,Suzhou University,Suzhou 234000,Anhui,China)
出处
《兰州文理学院学报(自然科学版)》
2019年第4期40-43,共4页
Journal of Lanzhou University of Arts and Science(Natural Sciences)
基金
2018教育部产学合作协同育人项目(201802203001)
2019年宿州学院校级平台项目“基于MapReduce的移动轨迹大数据挖掘方法与应用研究”(2019ykf04)
安徽省自然科学重点项目(KJ2019A1001)
宿州学院校企合作项目(2019hx011)
宿州学院2018年质量工程重点教学研究项目(szxy2018jyxm01)
2017年度宿州学院重点科研项目(2017yzd19)
关键词
机器学习
云计算
决策算法
machine learning
cloud computing
decision algorithm