期刊文献+

基于卷积神经网络的乳腺疾病检测算法

Detection algorithm of breast disease based on convolution neural network
下载PDF
导出
摘要 为提高计算机辅助乳腺疾病检测的准确率,提出一种基于卷积神经网络的乳腺疾病检测算法.首先,分别从卷积神经网络中提取图像的浅层特征与深层特征并对其进行加权融合;其次,通过在卷积神经网络中构建空间金字塔池化层,实现了卷积神经网络的多尺度输入;最后,在Mammographic Image Analysis Society(MIAS)数据集上进行验证实验.实验结果表明,本文提出的乳腺疾病检测算法平均准确率高达94.93%,与其他乳腺疾病检测算法进行对比实验可知,本文提出的乳腺疾病检测算法具有更高的检测准确率. In order to improve the accuracy of computer-aided breast disease detection, a breast disease detection algorithm based on convolution neural network is proposed. Firstly, the shallow and deep features of the images are extracted from the convolution neural network, and then fuse them in a weighted way. Secondly, the multi-scale input of the convolution neural network is realized by using the spatial Pyramid pool algorithm. Finally, the algorithm is tested on the Mammographic Image Analysis Society (MIAS) data set. The experimental results show that the average accuracy rate of the breast disease detection algorithm is up to 93. 32%. Compared with other breast disease detection algorithms, the breast disease detection algorithm proposed in this paper has higher detection accuracy.
作者 赵京霞 钱育蓉 张猛 杜娇 ZHAO Jing-xia;QIAN Yu-rong;ZHANG Meng;DU Jiao(School of Software, Xinjiang University, Urumqi 830008, China)
出处 《微电子学与计算机》 北大核心 2019年第7期48-53,共6页 Microelectronics & Computer
基金 国家自然科学基金(61562086,61462079) 新疆维吾尔自治区教育厅创新团队项目(XJEDU2016S035) 新疆大学博士科研启动基金项目(BS150257) 2017年度自治区高校科研计划项目(XJEDU2017T002)
关键词 卷积神经网络 特征融合 空间金字塔池化 尺度无关 乳腺疾病检测 convolutional neural network features fusion spatial pyramid pooling scale-independent detection of breast disease
  • 相关文献

参考文献7

二级参考文献53

  • 1王建宇,张峰,周献中,史迎春,骆文.利用小波变换和K均值聚类实现字幕区域分割[J].计算机辅助设计与图形学学报,2006,18(10):1508-1512. 被引量:10
  • 2田岩岩,齐国清.基于小波变换模极大值的边缘检测方法[J].大连海事大学学报,2007,33(1):102-106. 被引量:29
  • 3Vapnik V N.统计学习理论[M].许建华,张学工,译.北京:电子工业出版社,2009.
  • 4NelloCristianini JohnShawe-Taylor 李国正 王猛 曾华军译.支持向量机导论[M].北京:电子工业出版社,2004..
  • 5Pisano E D, Gatsonis C, Hendrick E, et al. Diagnostic per?formance of digital versus film mammography for breast-can?cer screening[J]. The New EnglandJournal of Medicine, 2005, 353(17): 1773-1783.
  • 6Eltonsy N H, Tourassi G D, Elmaghraby A S. A concentric morphology model for the detection of masses in mammogra?phy[J]. IEEE Transactions on Medical Imaging, 2007, 26(6): 880-889.
  • 7Wang Z Q, Yu G, Kang Y, et al. Breast tumor detection in dig?ital mammography based on extreme learning machine[J]. Neurocomputing, 2014,128(3): 175-184.
  • 8Yin F F, Giger M L, Doi K, et al. Computerized detection of masses in digital mammograms: analysis of bilateral subtrac- tion images[J]. Medical Physics, 1991, 18(5): 955-963.
  • 9Sallam M Y, Bowyer K W. Registration and difference analysis of corresponding mammogram images[J]. Medical Image Analysis, 1999,3(2): 103-118.
  • 10Bernholt T, Fried R, Gather U, et al. Modified repeated median filters[J]. Statistics and Computing, 2006,16(2): 177-192.

共引文献1824

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部