期刊文献+

Lightweight Topology Optimization with Buckling and Frequency Constraints Using the Independent Continuous Mapping Method 被引量:5

原文传递
导出
摘要 This research focuses on the lightweight topology optimization method for structures under the premise of meeting the requirements of stability and vibration characteristics. A new topology optimization model with the constraints of natural frequencies and critical buckling loads and the objective of minimizing the structural volume is established and solved based on the independent continuous mapping method. The eigenvalue equations and composite exponential filter functions are applied to convert the optimization formulation into a continuous, solvable mathematical programming model. In the process of topology optimization, suitable initial values of the filter functions are chosen to avoid local modes, and the dynamic frequency gap constraints are added in the optimal model to prevent mode switches. Furthermore, for the optimal structures with grey elements obtained by the continuous optimization model, the bisection-inverse iteration is applied to search the optimal discrete structures. Finally, a detailed scheme is given for the buckling and frequency topology optimization problem. Numerical examples illustrate that the modelling method of minimizing the economic index with given performance requirements is practical and feasible for multi-performance topology optimization problems.
出处 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2019年第3期310-325,共16页 固体力学学报(英文版)
基金 the National Natural Science Foundation of China (11872080, 11172013) Natural Science Foundation of Beijing Municipality (3192005) Beijing Education Committee Development Project (SQKM201610005001).
  • 相关文献

参考文献4

二级参考文献29

  • 1马立敏,张嘉振,岳广全,刘建光,薛佳.复合材料在新一代大型民用飞机中的应用[J].复合材料学报,2015,32(2):317-322. 被引量:211
  • 2Zhen Luo,Jingzhou Yang,Li-Ping Chen,Yun-Qing Zhang,Karim Abdel-Malek.A new hybrid fuzzy-goal programming scheme for multi-objective topological optimization of static and dynamic structures under multiple loading conditions[J].Structural and Multidisciplinary Optimization.2006(1)
  • 3Z. Luo,L. Chen,J. Yang,Y. Zhang,K. Abdel-Malek.Compliant mechanism design using multi-objective topology optimization scheme of continuum structures[J].Structural and Multidisciplinary Optimization.2005(2)
  • 4G.H. Yoon,Y.Y. Kim,M.P. Bends?e,O. Sigmund.Hinge-free topology optimization with embedded translation-invariant differentiable wavelet shrinkage[J].Structural and Multidisciplinary Optimization.2004(3)
  • 5T.A. Poulsen.A simple scheme to prevent checkerboard patterns and one-node connected hinges in topology optimization[J].Structural and Multidisciplinary Optimization.2002(5)
  • 6O. Sigmund.A 99 line topology optimization code written in Matlab[J].Structural and Multidisciplinary Optimization.2001(2)
  • 7M. P. Bends?e,O. Sigmund.Material interpolation schemes in topology optimization[J].Archive of Applied Mechanics (-).1999(9-10)
  • 8O. Sigmund,J. Petersson.Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima[J].Structural Optimization.1998(1)
  • 9R. B. Haber,C. S. Jog,M. P. Bends?e.A new approach to variable-topology shape design using a constraint on perimeter[J].Structural Optimization (-).1996(1-2)
  • 10A. Díaz,O. Sigmund.Checkerboard patterns in layout optimization[J].Structural Optimization.1995(1)

共引文献19

同被引文献18

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部