期刊文献+

生成对抗网络图像处理综述 被引量:17

A survey on generative adversarial networks in image processing
下载PDF
导出
摘要 2014年提出的生成对抗网络(Generative Adversarial Networks,GAN)是近年来神经网络领域中为数不多的一项新锐技术。GAN在常见生成模型的基础上增加了一个判别模型,以形成巧妙的对抗学习机制,使它能够产生更高质量的图像。近年来各种改进型GAN在图像处理领域得到广泛应用,不但覆盖了几乎所有传统图像处理领域,还包括一些新应用,如图像编辑、图像翻译、风格转移等,普遍取得了胜过传统方法的良好结果。文中在简要分析GAN的系统结构、对抗生成和网络训练的基础上,重点介绍了为提高GAN性能、克服现存缺陷和满足不同应用而出现的多种改进型GAN,如DC-GAN、W-GAN、Big-GAN等。尽管如此,目前GAN尚处于初始发展阶段,将来的前途不可估量。 Generative adversarial networks(GAN)proposed in 2014 is one cutting-edge technique of several deep learning technologies in the neural networks in the past few years.A discriminative model is added to familiar generative model by GAN to form an adversarial competitive strategy in subtle way in order to produce higher quality images.Recently,many improved GANs are widely applied in image processing,not only covering nearly all applications of traditional image processing,but also including other new applications,such as image editing,image translation,style transfer,etc,and have gotten better performance than that the traditional methods got.Based on brief analysis on GAN system architecture,adversarial generating and networks training,this paper stresses on introducing several schemes of improved GANs,such as DC-GAN,W-GAN,Big-GAN,and so on,whose target is to promote GAN’s performance,overcome GAN’s defects,and adapt the environment requirements for deferent applications.Nowadays,GAN techniques are still in initial stage of vigorous development,and have a bright future for us.
作者 朱秀昌 唐贵进 ZHU Xiuchang;TANG Guijin(Jiangsu Province Key Lab on Image Processing & Image Communication,Nanjing University of Posts and Telecommunications,Nanjing 210003,China)
出处 《南京邮电大学学报(自然科学版)》 北大核心 2019年第3期1-12,共12页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
关键词 深度学习 生成对抗网络 图像处理 生成模型 判别模型 deep learning generative adversarial networks image processing generative model discriminative model
  • 相关文献

参考文献1

二级参考文献3

共引文献18

同被引文献95

引证文献17

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部