期刊文献+

基于多层感知机的个性化链接排序预测

PRMLP: Personalized link prediction based on multilayer perceptron
下载PDF
导出
摘要 社交网络链接预测,即通过历史社交网络结构信息,预测未来一段时间内社交用户之间可能会产生新的链接关系,是社会网络分析中的一个重要问题。现有的模型挖掘了用户之间的浅层交互关系,或者通过深层网络去学习用户的特征描述。然而,由于社会网络数据极其稀疏,现有的模型在链接预测的表现上存在一定的提升空间。针对上述问题,文章提出基于多层感知机的个性化链接排序预测模型(PRMLP),从而实现了社交链接预测任务。PRMLP同时考虑了用户之间的交互关系,并采用了多层网络结构深入挖掘社会网络的拓扑结构,因此能够学习得到更精准的用户特征描述。文章针对模型训练中正负样本不平衡的问题提出了解决方案,在2个真实数据集进行的实验表明,文中提出的基于多层感知机的个性化链接排序预测模型相对于现有的其他链接预测模型表现更优。 Link prediction is the task of predicting the possible link relationships between users based on the current social network structure,which plays an important role in social network analysis. The current solutions either model shallow interaction relationships between users or simply adopt deep learning models for the prediction task. Nevertheless,due to the sparsity of the social network data,the performance of these methods is not satisfactory. In this paper,a new model of personalized link prediction based on multilayer perception named PRMLP is proposed. Specifically,to deal with the data sparsity problem,PRMLP model adopts a multilayer perception neural network that considers both the complementary advantage of the shallow user interaction relationship and the deep network structure for learning useful user representations. Furthermore,a solution to deal with the data imbalance problem in model learning process that there are much more negative links than the positive links in the social network is proposed. The experiments on two real datasets demonstrate that the proposed method outperforms the state-of-the-art methods.
作者 孙培杰 吴乐 SUN Peijie;WU Le(School of Computer and Information,Hefei University of Technology,Hefei 230601,China)
出处 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2019年第6期750-755,共6页 Journal of Hefei University of Technology:Natural Science
基金 中央高校基本科研业务费专项资金资助项目(JZ2016HGBZ0749) 模式识别国家重点实验室开放课题基金资助项目(201700017)
关键词 多层感知机 社交网络 链接预测 个性化信息 神经网络 multilayer perceptron social network link prediction personalized information neural network
  • 相关文献

参考文献2

二级参考文献11

  • 1Lu Linyuan, Zhou Tao. Link Prediction in Complex Networks : A Sur-vey[ OL]. (2010) http://arxiv.org/abs/1010.0725.
  • 2Hasan M A, Chaoji V, Salem S,et al. Link prediction using super-vised leaming[ C ] //Proceedings of SDM 06 workshop on Link Analy-sis, 2006.
  • 3Menon A K, Elkan C. Link R-ediction via Matrix Factorization [ J ].Machine Learning and Knowledge Discovery in Databases, 2011,6912(2011) : 437-452.
  • 4Yang Shuanghong, Long Bo, Smola A, et al. Like like alike - jointfriendship and interest propagation in social networks [ C ]//Proceed-ings of the 20th international conference on World wide web. NewYork: ACM, 2011.
  • 5Cui Peng, Wang Fei, Yang Shiqiang, et al. Item-Level Social Influ- ence Prediction with Probabilistic Hybrid Factor Matrix Factorization[ C ]//Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence. San Francisco: AAAI, 2011.
  • 6Backstrom L, Leskovec J. Supervised random walks: predicting and recommending links in social networks[ C]//Proceedings of the 4th In- ternational Conference on Web Search and Data Mining, Hong Kong: WSDM,2011.
  • 7Jamali M , Ester M. A Transitivity Aware Matrix Factofization Model for Recommendation in Social Networks [ C ]//Proceeding of the 22nd International Joint Conference on Artificial Intelligence. Barcelona: IJ- CAI, 2011.
  • 8Dong Y, Tang J, Wu S, et al. Link Prediction and Recommendation across Heterogenous Social Networks [ C ]//Proceedings of 2012 IEEE International Conference on Data Mining. ICDM 2012.
  • 9David Liben-Nowell, Kleinberg J. The Link Prediction Problem for So- cial Networks [ J ]. Journal of the American Society for Information Sci- ence and Technology, 2007,58 (7) :1019 -1031.
  • 10吕琳媛.复杂网络链路预测[J].电子科技大学学报,2010,39(5):651-661. 被引量:243

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部