期刊文献+

基于深度卷积神经网络的肺结节检测算法 被引量:9

Pulmonary nodule detection algorithm based on deep convolutional neural network
下载PDF
导出
摘要 在传统的肺结节检测算法中,存在检测敏感度低,假阳性数量大的问题。针对这一问题,提出了基于深度卷积神经网络(CNN)的肺结节检测算法。首先,有目的性地简化传统的全卷积分割网络;然后,创新地加入对部分CNN层的深监督并使用改进的加权损失函数,获得高质量的候选肺结节,保证高敏感度;其次,设计了基于多尺度上下文信息的三维深度CNN来增强对图像的特征提取;最后,将训练得到的融合分类模型用于候选结节分类,以达到降低假阳率的目的。所提算法使用了LUNA16数据集,并通过对比实验验证算法的性能。在检测阶段,当每个CT检测出的候选结节数为50.2时,获得的敏感度为94.3%,与传统的全卷积分割网络相比提升了4.2个百分点;在分类阶段,竞争性能指标达到0.874。实验结果表明,所提算法能够有效提高检测敏感度和降低假阳率。 In traditional pulmonary nodule detection algorithms,there are problems of low detection sensitivity and large number of false positives. To solve these problems,a pulmonary nodule detection algorithm based on deep Convolutional Neural Network (CNN) was proposed. Firstly,the traditional full convolution segmentation network was simplified on purpose. Then,in order to obtain high-quality candidate pulmonary nodules and ensure high sensitivity,the deep supervision of partial CNN layers was innovatively added and the improved weighted loss function was used. Thirdly,three-dimensional deep CNNs based on multi-scale contextual information were designed to enhance the feature extraction of images. Finally,the trained fusion classification model was used for candidate nodule classification to achieve the purpose of reducing false positive rate. The performance of algorithm was verified through comparison experiments on LUNA16 dataset. In the detection stage,when the number of candidate nodules detected by each CT (Computed Tomography) is 50.2,the sensitivity of this algorithm is 94.3%,which is 4.2 percentage points higher than that of traditional full convolution segmentation network. In the classification stage,the competition performance metric of this algorithm reaches 0.874. The experimental results show that the proposed algorithm can effectively improve the detection sensitivity and reduce the false positive rate.
作者 邓忠豪 陈晓东 DENG Zhonghao;CHEN Xiaodong(Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201210,China;University of Chinese Academy of Sciences,Beijing 100049,China;School of Information Science and Technology,ShanghaiTech University,Shanghai 201210,China)
出处 《计算机应用》 CSCD 北大核心 2019年第7期2109-2115,共7页 journal of Computer Applications
关键词 肺结节检测 深度卷积神经网络 深监督 加权损失函数 多尺度 pulmonary nodule detection deep Convolutional Neural Network (CNN) deep supervision weighted loss function multi-scale
  • 相关文献

参考文献2

二级参考文献9

共引文献39

同被引文献39

引证文献9

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部