期刊文献+

面向航空影像下车辆目标的实时检测算法 被引量:4

Real-time detection algorithm for vehicle targets in aerial images
下载PDF
导出
摘要 为解决自然场景下的通用目标检测框架对航空影像下的小车辆目标检测性能不足的缺陷,提出一种专用于航空影像下的小车辆目标实时检测器,即轻量级尺度公平单卷积检测器(lightweight scale fair single convolution detector,LSFSCD)。相比传统检测方法和基于CNN的通用检测等方法,其架构更加简单,模型更小。该架构减少了误检和错检,实现更高检测精度的同时减少训练时间。通过使用Caffe框架在8g显存GTX1080上对VEDAI和DLR数据集进行实验,其结果验证了所提算法的有效性。 To solve the shortcomings of the general target detection framework in natural scenes,such as the lack of small vehicle target detection performance in aerial image,a real-time detector for small vehicle targets dedicated to aerial imagery was proposed,which was a lightweight scale fair single convolution detector (LSFSCD). Compared with traditional detection methods and general detection methods based on CNN,the architecture is simpler and the model is smaller. This architecture reduces false detections and false positives,enabling higher detection accuracy and using less training time. The effectiveness of the proposed algorithm is verified by experimenting on VEDAI and DLR data sets on 8g memory GTX1080 using Caffe framework.
作者 杨国亮 许楠 洪志阳 范振 YANG Guo-liang;XU Nan;HONG Zhi-yang;FAN Zhen(School of Electrical Engineering and Automation,Jiangxi University of Science and Technology,Ganzhou 034100,China)
出处 《计算机工程与设计》 北大核心 2019年第7期1956-1963,共8页 Computer Engineering and Design
基金 国家自然科学基金项目(51365017)
关键词 航空影像 车辆检测 实时 卷积 神经网络 深度学习 aerial image vehicle detection real-time convolution neural networks deep learning
  • 相关文献

参考文献3

二级参考文献24

  • 1Babenko B, Yang M H, Belongie S. Robust obiect tracking with online multiple instance learning [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (8): 1619-1632.
  • 2Kalal Z, Matas J, Mikolajczyk K. P-N learning: Bootstrap- ping binary classifiers by structural constraints [-C] //IEEE Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010: 49-56.
  • 3Wang S, Lu H, Yang F, et al. Superpixel tracking [C] // IEEE International Conference on Computer Vision. Barcelona: IEEE, 2011: 1323-1330.
  • 4Ross D A, Lim J, Lin R S, et al. Incremental learning for ro- bust visual tracking [J]. International Journal of Computer Vi- sion, 2008, 77 (1-3): 125-141.
  • 5Kwon J, Lee K M. Visual tracking decomposition[-C] // IEEE Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010: 1269-1276.
  • 6Mei X, Ling H. Robust visual tracking using L1 minimization[C] //Proceedings of the IEEE International Conference on Computer Vision, 2009: 1436-1443.
  • 7Mei X, Ling H, Wu Y. Minimum error bounded efficient L1 tracker with occlusion detection [C] //IEEE Conference on Computer Vision and Pattern Recognixion. Colorado Springs: IEEE, 2011: 1257-1264.
  • 8Liu B, Huang J, Yang L. Robust tracking using local sparse appearance model and k-selection [-C] //IEEE Conference on Computer Vision and Pattern Recognixion. Colorado Sprfngs: IEEE, 2011: 1313-1320.
  • 9Zhang T, Ghanem B, Liu S, et al. Robust visual tracking via multi-task sparse learning [-C] //IEEE Conference on Compu- ter Vision and Pattern Recognition. IEEE, 2012: 2042-2049.
  • 10Zhang T, Ghanem B, Liu S, et al. Robust visual tracking via structured multi-task sparse learning [J]. International Journal of Computer Vision, 2013, 101 (2): 367-383.

共引文献6

同被引文献15

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部