期刊文献+

微通道内被动式流体混合研究 被引量:2

Study on the Passive Fluid Mixing in Microchannel
原文传递
导出
摘要 微结构引发微通道内不同流体相界面拉伸、折叠及诱导形成二次涡流,对被动式流体混合有着重要的影响。在前期针对单侧带有微结构的微通道内被动式流体混合研究的基础上,本文在微通道两侧设计了不同形式的微结构,并进一步研究微结构排列形式对被动式流体混合的影响。研究结果表明,相较于微结构分布在单侧的微通道,当微结构分布在微通道的两侧时,无法形成多流体层结构,导致流体混合效率降低。同时,由于微结构数量增多,双侧带有微结构的微通道内流动阻力损失增加,达到的最大流量减小。本文研究有助于高效被动式流体混合器设计,促进微流体混合技术在生物医学、化学分析与反应等领域中的应用。 Microstructure could induce the stretching and the folding of the interface between different fluids as well as the secondary flow,which highly influences the fluid mixing in microchannel.Based on the prior study on the fluid mixing in microchannel with microstructures on one side,microchannels with microstructures on two sides were fabricated,and experiments were conducted on the fluid mixing.The experimental results show that,in comparison to the microchannel with microstructures on one side,no multilamellar fluid structure was generated in the microchannel with microstructures on two sides,resulting in a low mixing efficiency.In addition,more structures were designed in the microchannel with microstructures on two sides,which induces high flow resistance and low throughput.This study is of great help for the design of the efficient mixer and the application of the microfluidic technology in variety of fields including biomedicine,analytical chemistry and reaction.
作者 范亮亮 赵治 吴旭 者江 赵亮 FAN Liang-Liang;ZHAO Zhi;WU Xu;ZHE Jiang;ZHAO Liang(School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China;State Key Laboratory of Multiphase Flow in Power Engineering, Xi9an Jiaotong University, Xi'an 710049, China;Department of Mechanical Engineering, The University of Akron, Akron OH 44325-3903, USA)
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2019年第7期1562-1565,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.51706175,No.51876172,No.51476127) 中央高校基本科研业务费专项资金资助项目(No.xjj2016010)
关键词 微流体 几何结构 二次流 混合器 microfluidic geometrical structure secondary flow mixer
  • 相关文献

参考文献1

二级参考文献11

  • 1Toner M, Irimia D. Blood-on-a-Chip [J]. Annual Review of Biomedical Engineering, 2005, 7:77-103.
  • 2Cho S H, Chen C H, Tsai F S, et al. Human Mammalian Cell Sorting Using a Highly Integrated Micro-Fabricated Fluorescence-activated Cell Sorter (~FACS) [J]. Lab on a Chip, 2010, 10(12): 1567-1573.
  • 3Shi J, Mao X, Ahmed D, et al. Focusing Microparticles in a Microfluidie Channel with Standing Surface Acoustic Waves (SSAW) [J]. Lab on a Chip, 2008, 8(2): 221 223.
  • 4Chu H, Doh I, Cho Y H. A Three-Dimensional (3D) Parti- cle Focusing Channel Using the Positive Didectrophoresis (pDEP) Guided by a Dielectric Structure Between Two Planar Electrodes [J]. Lab on a Chip, 2009, 9(5): 686-691.
  • 5Zhang X, Cooper J M, Monaghan P B, et al. Continuous Flow Separation of Particles Within an Asymmetric Mi- erofluidic Eevice [J]. Lab on a Chip, 2006, 6(4): 561 -566.
  • 6Park J S, Song S H, Jung H I. Continuous Focusing of Microparticles Using Inertial Lift Force and Vorticity Via Multi-Orifice Microfluidic Channels [J]. Lab on a Chip, 2009, 9(7): 939-948.
  • 7Aoki R, Yamada M, Yasuda M, et al. In-Channel Fo- cusing of Flowing Microparticles Utilizing Hydrodynamic Filtration [J]. Microfluidics and Nanofluidics, 2009, 6(4): 571-576.
  • 8Fan L L, Han Y, He X K, et al. High-Throughput, Single- Stream Microparticle Focusing Using a Microchannel with Asymmetric Sharp Corners [J]. Microfiuidics and Nanoflu- idics, 2014, 17(4): 639 -646.
  • 9Bhagat A A S, Kuntaegowdanahalli S S, Papautsky I. Enhanced Particle Filtration in Straight Microchannels Using Shear-Modulated Inertial Migration [J]. Physics of Fluids (1994-Present), 2008, 20(10): 101702.
  • 10Asmolov E S. The Inertial Lift on a Spherical Particle in a Plane Poiseuille Flow at Large Channel Reynolds Number [J]. Journal of Fluid Mechanics, 1999, 381:63- 87.

同被引文献39

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部