期刊文献+

多普勒信息辅助的杂波环境下多目标跟踪算法 被引量:6

Multi-Target Tracking in Clutter Aided by Doppler Information
下载PDF
导出
摘要 传统雷达目标跟踪方法仅利用目标的位置信息进行数据关联,在处理密集杂波环境下的多目标跟踪问题时,容易产生虚假航迹,甚至出现误跟、失跟的现象。该文针对此问题提出一种多普勒信息辅助的杂波环境下多目标跟踪算法。首先引入多普勒信息带来的观测方程非线性,以及速度观测与距离观测之间的相关性问题,基于IPDA-UKF算法框架,综合利用目标的位置和速度信息构建多维关联波门,利用多维信息进行有效量测的筛选,从而将一个多目标数据关联的问题转化为多个单目标数据关联的问题,然后采用IPDA-UKF分别估计各个目标的存在概率和运动状态。仿真结果表明:相比其他算法,该算法充分利用距离和速度之间的相关性,不仅降低了杂波环境下多目标数据关联的复杂度,提高了数据关联的效率,而且目标跟踪精度也得到了明显提升。 The traditional radar target tracking methods only utilize the information of target position to finish data association. When these methods are used to deal with the problem of multi-target tracking in the dense clutter, it is easy to generate the false tracks or even to lose tracks. Aiming at this problem, a multi-target tracking algorithm aided by Doppler information is proposed in this paper. The problems of the nonlinear measurement and the correlation relationship between range and Doppler measurements are considered in the proposed algorithm. Firstly, the multi-dimension correlating gate is constructed with the information of target position and velocity based on the frame of integrated probabilistic data association and unscented Kalman filter (IPDA-UKF). The data association is accomplished with the multi-dimension information. So the problem of multi-target data association is simplified to multiple sub-problems consisting of a single target data association. Secondly, the existing probability and motion state of each target are estimated by the IPDA-UKF algorithm respectively. The simulation results and comparison with the other algorithms reveal that the proposed algorithm has reduced the computing complexity of multi-target data association, and improved the efficiency of data association by using the correlation between range and Doppler measurement completely on the one hand. On the other hand, the tracking accuracy is also improved by the aid of Doppler information.
作者 靳标 李聪 郭交 何东健 JIN Biao;LI Cong;GUO Jiao;HE Dong-jian(School of Electronics and Information, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003;College of Mechanical and Electronic Engineering, Northwest A&F University Yangling Shanxi 712100;Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Northwest A&F University Yangling Shanxi 712100;Shanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Northwest A&F University Yangling Shanxi 712100)
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2019年第4期511-517,共7页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61701416,41301450) 中央高校基本科研业务费专项(2452017127) 农业部农业物联网重点实验室开放基金(2017AIOT-06)
关键词 多普勒信息 概率数据关联 雷达目标跟踪 不敏卡尔曼滤波 Doppler information probabilistic data association radar target tracking unscented Kalman filter
  • 相关文献

参考文献2

二级参考文献20

  • 1文成林,吕冰,葛泉波.一种基于分步式滤波的数据融合算法[J].电子学报,2004,32(8):1264-1267. 被引量:31
  • 2张怀根,张林让,吴顺君.利用径向速度观测值提高目标跟踪性能[J].西安电子科技大学学报,2005,32(5):667-670. 被引量:18
  • 3Mazor E, Averbuch A, Bar-Shalom Y, et al. Interacting multiple model methods in target tracking: a survey[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998,34(1): 103-123.
  • 4Lan J, Li X R, and Jilkov V P. Second-order Markov chain based multiple-model algorithm for maneuvering target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 3-19.
  • 5Laneuville D and Bar-Shalom Y. Maneuvering target tracking: a Gaussian mixture based IMM estimator[C]. Proceedings of IEEE/AIAA Aerospace Conference, Big Sky, MT, 2012: 1-12.
  • 6Kershaw D J and Evans R J. Optimal waveform selection for tracking systems[J]. IEEE Transactions on Information Theory, 1994, 40(5): 1536-1550.
  • 7Sira S P, Papandreou-Suppappola A, and Morrell D. Dynamic configuration of time-varying waveforms for agile sensing and tracking in clutter[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3207-3217.
  • 8Haykin S, Zia A, Arasaratnam I, et al. Cognitive tracking radar[C]. Proceedings of the IEEE Radar Conference, Washington, DC, 2010: 1467-1470.
  • 9Haykin S, Zia A, Xue Y, et al. Control theoretic approach to tracking radar: first step towards cognition[J]. Digital Signal Processing, 2011, 21(6): 576-585.
  • 10Savage C O and Moran B. Waveform selection for maneuvering targets within an IMM Framework[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1205-1214.

共引文献10

同被引文献78

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部