期刊文献+

基于信息分配技术的双变量模糊时间序列模型构建 被引量:1

Construction of Bivariate Fuzzy Time Series Model Based on Information Distribution Technology
下载PDF
导出
摘要 针对目前信息分配模糊时间序列模型只能研究单变量的局限性,文章构建了一个基于信息分配技术的双变量模糊时间序列预测模型,并探讨模糊区间长度对模型预测精度的影响。以中国的互联网用户渗透率以及实际GDP为例验证模型的有效性,并选取经典马尔可夫模型作为对比模型。结果表明:模糊区间长度对信息分配模型的预测精度有影响,且模糊区间长度减小能提高预测精度。 For the limitations that fuzzy time series model of information distribution can only study univariate, this paper constructs a bivariate forecasting model of fuzzy time series based on information distribution technology, and discusses the influence of fuzzy interval length on model prediction accuracy. And then the paper takes China's Internet user penetration rate and real GDP as examples to verify the validity of the model, and also selects the classical Markov model as the contrast model. The results show that the length of fuzzy interval has an effect on the prediction accuracy of information distribution model, and the prediction accuracy can be improved by decreasing the length of fuzzy interval.
作者 李肖肖 付恒春 薛晔 Li Xiaoxiao;Fu Hengchun;Xue Ye(School of Economics and Management. Taiyuan University of Technology,Taiyuan 030600,China)
出处 《统计与决策》 CSSCI 北大核心 2019年第13期33-36,共4页 Statistics & Decision
基金 山西省高等学院哲学社会科学研究项目(2017314)
关键词 信息分配 模糊信息推理 双变量模糊时间序列 中国GDP预测 information distribution fuzzy information reasoning bivariable fuzzy time series prediction of Chinese GDP
  • 相关文献

参考文献1

二级参考文献15

  • 1Song Q, Chissom B S. Fuzzy time series and its models[J]. Fuzzy Sets and Systems, 1993, 54(3): 269-277.
  • 2Chen S M. Forecasting enrollments based on fuzzy time series[J]. Fuzzy Sets and Systems, 1996, 81(3): 311-319.
  • 3Lee M H, Efendi R, Ismail Z. Modified weighted for enrollment forecasting based on fuzzy time series[J]. Matematika, 2009, 25(1): 67-78.
  • 4Ufuk Yolcu, Erol Egrioglu, Vedide R Uslu, et al. A new approach for determining the length of intervals for fuzzy time series[J1. Applied Soft Computing, 2009, 9(2): 647-.
  • 5Huarng K H. Effective lengths of intervals to improve forecasting in fuzzy time series[J]. Fuzzy Sets and Systems, 2001, 123(3): 387-394.
  • 6Huarng K H. Ratio-based lengths of intervals to improve fuzzy time series forecasting[J]. IEEE Trans on Systems, Man, and Cybernetics, Part B, 2006, 36(2): 328-340.
  • 7Cheng C H, Chen T L, Chiang C H. Trend-weighted fuzzy time-series model for TAIEX forecasting[J]. Lecture Notes in CompUter Science, 2006, 4234(3): 469-477.
  • 8Yu H K. Weighted fuzzy time Series model for TAIEX forecasting[J]. Physica A, 2005, 349(3/4): 609-624.
  • 9Wang N Y, Chen S M. Temperature prediction and TAIFEX forecasting based on automatic clustering techniques and two-factors high-order fuzzy time series[J]. Expert Systems with Applications, 2009, 36(2): 2143-2154.
  • 10Huarng K H, Yu H K. A type2 fuzzy time series model for stock index forecasting[J]. Physica A: statistical Mechanics and Its Applications, 2005, 353(1-4): 445-462.

共引文献17

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部