期刊文献+

一种基于压缩感知的运动目标检测技术

A Moving Target Detection Technology Based on Compressed Sensing
下载PDF
导出
摘要 运动目标检测是计算机视觉、图像处理等相关领域的研究热点,其核心就是对视频图像中的每一帧图像进行相应的研究和处理。本文主要研究思路是从压缩感知技术采样信号的角度出发,将每一帧的二维图像压缩采样成具有少量信息的一维信号,再通过信号重构用少量数据量将图像重构出来,最后通过目标检测技术对每一帧的图像进行运动目标提取。仿真实验表明该方法是可行和有效的,同时可以大大减少目标检测中所记录的数据量,解决海量数据的存储与传输问题。 Moving target detection is a research hotspot in computer vision, image processing and other related fields. The core is to study and process each frame of image in video image. The main research idea of this paper is to compress and sample the two-dimensional image of each frame into a one-dimensional signal with a small amount of information, and reconstruct the image. Finally, the moving target extraction is performed on the image of each frame by the target detection technique. Simulation experiments show that the method is feasible and effective, and can greatly reduce the amount of data recorded in the target detection, and solve the problem of storage and transmission of massive data.
作者 戴晓芳 DAI Xiao-fang(Guangzhou Vocational College of Science and Technology, Guangzhou 510000, Guangdong)
出处 《电脑与电信》 2019年第5期64-67,共4页 Computer & Telecommunication
关键词 目标检测 压缩感知 差分法 测量矩阵 target detection compressed sensing difference method measurement matrix
  • 相关文献

参考文献6

二级参考文献35

  • 1杜振洲,周付根.基于帧间去相关的超光谱图像压缩方法[J].红外与激光工程,2004,33(6):642-645. 被引量:8
  • 2[2]Ching W S. A Novel change detection algorithm using adaptive threshold, Image and Vision Computing, 1994,12[7] :459 ~ 463.
  • 3[3]Fathy M, Siyal M Y. An image detection technique based on morphological edge detection and background differencing for real-time traffic analysis. Pattem Recognition Letters. 1995.7,16:1321~1330.
  • 4[4]Jain R. Difference and accumulative difference pictures in dynamic scene analysis. Image and Vision Computing. 1984,2[2] :99~108.
  • 5Emmanuel Cand ' s. Compressive sampling. International Congress of Mathematics. 3, pp.1433- 1452, Madrid, Spain, 2006.
  • 6Emmanuel Cand : s, Justin Romberg, and Terence Tao. Robust uncertainty principles: Exact signal reconstru- ction from highly incomplete frequency information. IEEE Trans. on Information Theory, 52(2) pp. 489-509, February 2006.
  • 7Emmanuel Cand ] s and Justin Romberg. Q uan tita tive rob u st uncertain ty principles and optimally sparse decompositions. Foundations of Comput. Math., 6(2), pp. 227-254, April 2006.
  • 8David Donoho. Compressed sensing. IEEE Trans. on Information Theory, 52(4), pp. 1289-1306, April 2006.
  • 9Emmanuel Cand ] s and Justin Romberg. Practical signal recovery from random projections. h ttp://www, acre. caltech.edu/-emman uel/papers/ Practi calR eco very.pdf.
  • 10Bobin J,Starck J L,Ottensamer R.Compressed sensing in astronomy [ J ].IEEE Journal of Selected Topics in Signal Processing,2008,2(5):718-726.

共引文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部