期刊文献+

基于马尔可夫随机场的眼底图像血管分割研究 被引量:3

VESSEL SEGMENTATION OF FUNDUS IMAGE BASED ON MARKOV RANDOM FIELD
下载PDF
导出
摘要 眼底图像血管分割是医用图像分割中较为复杂的一种,在目前的研究中存在分割精度低、效率不高等问题。提出基于马尔可夫随机场的眼底图像血管分割算法,根据眼底图像的特点构建马尔可夫随机场模型,提取H通道作为特征场参数,利用最大后验准则完成标号场更新,最终实现对视网膜血管的分割。算法通过眼底图像数据库DRIVE进行测试,结果表明:该算法平均准确度为0.954 6,平均敏感度为0.899 9,平均特异度为0.957 1,具有很好的分割效果,且运行稳定,计算方便快捷,具有鲁棒性。 Vessel segmentation of fundus image is a relatively complex method in medical image segmentation. There are some problems in current research,such as low segmentation accuracy and low efficiency. This paper proposed vessel segmentation algorithm of fundus image based on the Markov random field. According to the characteristics of fundus image,a Markov random field model was constructed. H channel was extracted as the parameter of feature field,and the labeling field was updated by using the maximum posteriori criterion. Finally,the retinal blood vessels were segmented. The algorithm was tested by a fundus image database DRIVE. The results show that the average accuracy,sensitivity and specificity of the algorithm are 0.954 6,0.899 9 and 0.957 1 respectively. The algorithm has good segmentation effect,stable operation,convenient calculation and robustness.
作者 李语尧 李晓宇 陆子旭 黄为新 Li Yuyao;Li Xiaoyu;Lu Zixu;Huang Weixin(College of Computer Science and Technology,Jilin University,Changchun 130012,Jilin,China)
出处 《计算机应用与软件》 北大核心 2019年第7期254-258,306,共6页 Computer Applications and Software
基金 吉林大学国家级大学生创新创业训练项目(2018A2115)
关键词 马尔可夫随机场 眼底图像 视网膜血管分割 特征场 Markov random field Fundus image Retinal vein segmentation Characteristic field
  • 相关文献

参考文献5

二级参考文献93

  • 1徐海荣,田联房,陈萍,王立非,叶广春,毛宗源.改进的区域生长算法在医学图像分割中的应用[J].生物医学工程研究,2005,24(3):187-190. 被引量:13
  • 2Kirbas C, Quek F. Vessel extraction techniques and algorithms: a survey [ A ]. In: Proceedings of the 3rd IEEE Symposium on Biolnformatics and BioEngineering[ C] , Washington, DC, USA, 2003 : 238- 245.
  • 3Suri J S, Liu K. A review on MR vascular image processing: skeleton versus nonskeleton approaches: Part Ⅱ [ J ]. IEEE Transactions on Information Technology In Biomedicine, 2002,6(4) :338-350.
  • 4Frangi A, Niessen W, Vincken K. Multiscale vessel enhancement filtering [ A ]. In: Proceedings of the International Conference on Medical Image Computing Computer-assisted Intervention [ C ], Cambridge, MA, USA, 1998,1496 : 130-137.
  • 5Sato Y, Nakajima S, Shiraga N. Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images [ J ]. Medical, Image Analysis, 1993, 2 (2) : 143-168.
  • 6Krissian K, Malandain G, Ayache N. Model based muhiscale detection of 3D vessels [ A ] . In: Proceedings of. IEEE Computer Society Conference on Computer Vision and Pattern Recognition [ C ], Santa Barbara, CA, USA, 1998:722-727.
  • 7Lorigo L M, Faugeras O D, Grimson W E L CURVES: curve evolution for vessel segmentation [ J ]. Medical Image Analysis, 2001, 5 ( 3 ) : 195-206.
  • 8Vasilevskiy A, Siddiqi K. Flux-maximizing geometric flows [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24 ( 12 ) : 1565-1578.
  • 9Delphine N, Anthony Y, Greg T. Vessel segmentation using a shape driven flow [ A ]. In: International Conference on Medical Image Computing and Computer-Assisted Intervention [ C ], Saint-Malo, France, 2004:51-59.
  • 10Hassouna M S, Farag A A, Hushek S. Cerebrovascular segmentation from TOF using stochastic models [J]. Medical Image Analysis, 2006 ,10( 1 ) :1-18,.

共引文献109

同被引文献33

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部