摘要
交通流预测有助于减少交通拥堵和交通事故发生。在定量分析交通流变化过程的混沌特性以及可预测性基础上,提出一种基于相空间的GQPSO-WNN的混合预测模型。引入遗传算法,使用混合优化后的量子粒子群算法初始化小波神经网络的各项参数,克服网络因初始值设置不当造成无法收敛或陷入多个局部极小值的问题。由于神经网络输入的随机性,采用重新构建交通流时间序列的相空间技术,用重构后的数据作为输入样本。实验结果表明,与WNN、PSO-WNN预测模型相比,该模型可以更加准确预测交通流,算法收敛性也有明显提高。
Traffic flow prediction plays an important role in traffic congestion and accident control. The paper quantitatively analyzed the chaotic characteristics and predictability of traffic flow changes,and proposed a hybrid prediction model based on phase space GQPSO-WNN. We introduced genetic algorithm to initialize the parameters of the wavelet neural network by using the hybrid optimized quantum particle swarm algorithm,and it could overcome the problem that the network could not converge or fall into multiple local minimum values due to inappropriate initial settings. Due to the randomness of the neural network input,we used the phase space technique of reconstructing the traffic flow time series,and the reconstructed data was used as the input samples. The experimental results show that,compared with the WNN and PSO-WNN prediction models,the model can predict traffic flow more accurately,and the convergence of the algorithm is also significantly improved.
作者
唐瑞
陈庆春
类先富
Tang Rui;Chen Qingchun;Lei Xianfu(School of Information Science and Technology,Southwest Jiaotong University,Chengdu 611756,Sichuan,China;School of Mechanical and Electronic Engineering,Guangzhou University,Guangzhou 510006,Guangdong,China)
出处
《计算机应用与软件》
北大核心
2019年第7期311-316,共6页
Computer Applications and Software
关键词
相空间重构
量子粒子群
遗传算法
小波神经网络
交通流预测
Phase space reconstruction
QPSO
Genetic algorithm
Wavelet neural network
Traffic flow prediction