摘要
帕金森型震颤和原发性震颤的诊断一直是临床上的难题,而正确的诊断和用药对病人的治疗和康复尤为重要.随着传感器和人工智能技术的发展,越来越多的学者开始利用新的研究成果对两种疾病进行辅助诊断,并取得了良好的效果.文中总结了目前用于两种疾病诊断的可穿戴设备及其涉及到的相关分类算法,并讨论其优点和局限性;最后分析两种震颤辅助诊断研究当前存在的主要问题,并展望了未来可能的研究方向.
The diagnosis of Parkinson’s tremor and essential tremor has been a clinical problem,and proper diagnosis is of vital importance for the treatment and rehabilitation of patients.With the development of sensor technology and artificial intelligence(AI),more and more scholars begin to use state-of-the-art technology to assist diagnosis of two diseases,and satisfied results were achieved.This paper summarized the wearable devices currently used for the diagnosis of two diseases and related AI classification algorithms,and discussed their advantages and limitations.Finally,this paper analyzed the main problems existing in the related researches and pointed out the possible research directions in this field.
作者
张雨倩
顾冬云
ZHANG Yu-qian;GU Dong-yun(School of Biomedical Engineering,Shanghai Jiao Tong University,Shanghai 200030,China;Shanghai Key Laboratory of Orthopaedic Implants,Department of Orthopaedic Surgery,Shanghai Ninth People’s Hospital,Shanghai Jiao Tong University School of Medicine,Shanghai 200011,China)
出处
《计算机科学》
CSCD
北大核心
2019年第7期22-29,共8页
Computer Science
关键词
计算机辅助诊断
帕金森震颤
原发性震颤
人工智能
可穿戴传感器
Computer aided diagnosis
Parkinson's tremor
Essential tremor
Artificial intelligence
Wearable sensors