期刊文献+

多个体切换网络中带有时延通信的分布式次梯度优化算法 被引量:2

Distributed Subgradient Optimization Algorithm with Communication Delays for Multi-agent Switched Networks
下载PDF
导出
摘要 在一般的非平衡有向切换网络中,网络中的个体间可能存在通信时延现象。针对该情况,文中提出了多个体切换网络中带有时延通信的分布式次梯度优化算法。在该算法中,通过对通信网络进行扩维,将存在通信时延的无约束凸优化问题转化为无时延的无约束凸优化问题进行解决。利用非二次李雅普诺夫函数法证明了只要非平衡有向切换网络是周期强连通的以及通信时延有上界,那么基于时延通信的分布式次梯度优化算法就是收敛的。由于集中考虑了网络拓扑与通信时延,该算法更贴合实际情况。最后通过仿真实验验证了算法的有效性。 In the general non-balanced directional switching network,there may be communication delays among agents in networks.In light of this,this paper proposed a distributed subgradient optimization algorithm with communication delays for multi-agent switched networks.In this method,the unconstrained convex optimization problem with communication delays is converted into the unconstrained convex optimization problem without communication delays by augmenting delay nodes in communication network.The convergence of the multi-agent distributed subgradient optimization algorithm with communication delays is proved by using the non-quadratic Lyapunov function method,as long as the non-balanced directional switching network is periodical strong connectivity and the communication delays are upper bounded.Because the network topology conditions and communication delay are both intensively considered,this algorithm is more general and practical.Finally,a simulation example was given to demonstrate the effectiveness of the proposed algorithm.
作者 王俊雅 李甲地 李德权 WANG Jun-ya;LI Jia-di;LI De-quan(School of Mathematics and Big Data,Anhui University of Science and Technology,Huainan,Anhui 232000,China)
出处 《计算机科学》 CSCD 北大核心 2019年第7期81-85,共5页 Computer Science
基金 国家自然科学基金项目(11701007)资助
关键词 切换网络 通信时延 随机矩阵 次梯度方法 非二次李雅普诺夫函数 Switched networks Communication delays Stochastic matrix Subgradient method Non-quadratic Lyapunov function
  • 相关文献

参考文献3

二级参考文献27

  • 1蒋建国,夏娜.基于MAS的分布式智能控制初探[J].合肥工业大学学报(自然科学版),2005,28(9):1085-1088. 被引量:6
  • 2Nedic A, Ozdaglar A. Distributed subgradient methods formulti-agent optimization[J]. IEEE Transactions on Auto-matic Control?2009,54(1):48-61.
  • 3Boyd S, Vandenberghe L. Convex optimization [M]. Cam-bridge:Cambridge University Press,2004:21-187.
  • 4Johansson B. On distributed optimization in networked sys-tems [D]. Stockholm:Royal Institute of Technology(KTH),2008.
  • 5Ram S S,Veeravalli V V, Nedic A, Distributed non-autono-mous power control through distributed convex optimiza-tion[C]//INFOCOM 2009,IEEE, 2009:3001-3005.
  • 6Tsianos K D,Rabbat M G. Distributed consensus and opti-mization under communication delays[C]//49th Annual Al-lerton Conference on Communication, Control, and Compu-ting,2011:974-982.
  • 7Yuan Deming, Xu Shengyuan, Zhao Huanyu. Distributedprimal-dual subgradient method for multi-agent optimiza-tion via consensus algorithms [J], IEEE Transactions onSystem, Man and Cybernetics:Part. B, 2011, 41(6):1715-1724.
  • 8Ren W, Beard R W. Consensus seeking in multi-agent sys-tems under dynamically changing interaction topologies[J],IEEE Transactions on Automatic Control, 2005,50(5):655-661.
  • 9Nedic A. Asynchronous broadcast-based convex optimiza-tion over a network [J]4 IEEE Transactions on AutomaticControl,2011,56(6) .1337-1351.
  • 10Bondy J A. Graph theory [M]. Berlin:Springer,2008:39-79.

共引文献1

同被引文献11

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部