期刊文献+

基于单视图三维重建的凹凸制造特征识别 被引量:4

Concave-convex Manufacturing Features Recognition Based on 3D Reconstruction of Single View
下载PDF
导出
摘要 为实现凹凸制造特征机器人的自动识别,文中提出了一种不依赖于CAD设计模型的自动特征识别新方法。该方法以零件的单幅图像为识别线索,首先采用改进的SFS算法对零件表面进行三维曲面重建;然后对重建模型表面的形状指数进行分析以计算特征分割线,利用特征线将曲面进行分割以获得相应的特征区域;最后基于特征识别规则实现对零件凹凸制造特征的有效识别。该方法能够在缺少CAD模型时有效地实现制造特征的自动识别,从而为来料加工以及二次装配过程中机器人的自动特征识别提供重要的方法。通过实例零件验证了该方法的有效性和准确性。 This paper proposed a new method of automatic feature recognition without relying on the CAD design model to achieve robot automatic recognition for concave-convex manufacturing features.The method takes the single image of the part as the identification clue.Firstly,the surface of the part is reconstructed by using the improved method of shape from shading.Then,the features segmentation lines which are used to segment the surface are calculated by analyzing the surface shape indexes of the reconstructed model.The surface is segmented by feature lines to obtain the corresponding classification region.Finally,based on the feature recognition rules,the feature of concave and convex manufacturing is identified effectively.This algorithm can effectively solve the problem of automatic identification of manufacturing features in the absence of CAD model,providing important method for the automatic feature recognition of the robot in the processing of incoming materials and two assembly.The validity and accuracy of the proposed method were verified by an example.
作者 苗绘翠 王吉华 张全英 MIAO Hui-cui;WANG Ji-hua;ZHANG Quan-ying(School of Information Science & Engineering,Shandong Normal University,Jinan 250014,China)
出处 《计算机科学》 CSCD 北大核心 2019年第7期280-285,共6页 Computer Science
基金 国家自然科学基金项目(61472233) 山东省自然科学基金项目(ZF2014FM018)资助
关键词 SFS 三维重建 形状指数 凹凸制造特征 特征识别 SFS 3D reconstruction Shape index Concave-convex manufacturing feature Feature recognition
  • 相关文献

参考文献5

二级参考文献45

  • 1周炜,刘长毅,胡文伟.基于属性邻接图的轴类零件制造特征识别方法[J].机械科学与技术,2006,25(6):716-720. 被引量:6
  • 2HAN J H,PRATT M,REGLI W C.Manufacturing feature recognition from solid models:a status report[J].IEEE Transactions on Robotics and Automation,2000,16(6):782-796.
  • 3SHAH J J,ANDERSON D,KIM Y S,et al.A discourse on genmetric feature recognition from CAD models[J].Journal of Computing and Information Science in Engineering,2001,1 (1):41-51.
  • 4OWUDUNNI O,HINDUJ A S.Evaluation of existing and new feature recognition algorithms:Part 2.experimental results[J].Proceedings Institute of Mechanical Engineers,Part B:Journal of Engineering Mannfacture,2002,216(6):839-866.
  • 5SONTHI R,KUNJUR G,GADH R.Shape feature determination using the curvature region representation[C] //Proceedings of the 4th ACM Symposium on Solid Modeling and Applications.New York,N.Y.,USA:ACM,1997:285-296.
  • 6ZHANG Xingquan,WANG Jie,YAMAZAKI K,et al.A surface based approach to recognition of geometric features for quality freeform surface machining[J].Computer-Aided Design,2004,36(8):735-744.
  • 7SRIDHARAN N,SHAH J J.Recognition of multi-axis milling features:Part H-algorithms & implementation[J].Journal of Computing and Information Science in Engineering,2005,5 (1)25-34.
  • 8LIM T,MEDELLIN H,TORRES-SANCHEZ C,et al.Edgebased identification of DP-features on free-form solids[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(6):851-860.
  • 9PIEGL L,TILLER W.Symbolic operators for NURBS[J].Computer-Aided Design,1999,29 (5):361-368.
  • 10TAIT S S,RIDA T F.Gauss map computation for free-form surfaces[J].Computer-Aided Geometric Design,2001,18(9):831-850.

共引文献39

同被引文献40

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部