摘要
研究基于机器学习的近红外(Near infrared,NIR)光谱柑橘产地鉴别模型,根据NIR光谱数据的特点,提出了一个完整的产地鉴别通用框架,包括数据预处理、特征选择、模型建立和交叉验证等步骤。在框架下对比多种预处理算法以及多种机器学习算法,基于NIR光谱进行柑橘产地鉴别,得到了较好的识别结果,提高了柑橘产地鉴别的准确性。
This paper studies a machine-learning based near infrared (NIR) spectral model for oranges origin identification. According to the characteristics of NIR spectral data, a complete framework for origin identification is proposed, including data preprocessing, feature selection, model building and cross validation. Then, under this recognition framework, it compares several preprocessing algorithms and a variety of machine learning algorithms. Based on NIR spectroscopy, it also analyzes the oranges origin and obtains better recognition results. This improves the accuracy of oranges origin identification.
出处
《重庆第二师范学院学报》
2019年第4期117-122,128,共7页
Journal of Chongqing University of Education
基金
重庆第二师范学院校级课题“基于近红外光谱分析的柑橘产地鉴别技术研究”(KY201711B)
关键词
机器学习
NIR光谱
产地鉴别
machine learning
NIR spectroscopy
origin identification