摘要
研究了一类具有时滞的非局部扩散SIR传染病模型的行波解.首先,利用反证法证明了I是有界的,并根据I的有界性研究了波速c>c^*时行波解(波速大于最小波速的行波)的存在性.其次,利用c>c^*的行波的存在性结果证明了临界波(波速等于最小波速的行波)的存在性.最后,讨论了R0对临界波存在性的影响.
The existence of traveling wave solutions for nonlocal dispersal SIR epidemic models with delay was studied. Firstly, the boundedness of I was proved by contradiction. Then according to the boundedness of I, the existence of traveling waves with c>c^* was established. Secondly, through further analysis of traveling waves with super-critical speeds, the existence of traveling waves with the critical speed was derived. Finally, the influence of basic reproduction number R0 on the existence of c>c^* was discussed.
作者
张秋
陈广生
ZHANG Qiu;CHEN Guangsheng(School of Mathematics and Statistics, Xidian University,Xi’an 710071, P.R.China;College of Mathematics and Computer Science, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, P.R.China)
出处
《应用数学和力学》
CSCD
北大核心
2019年第7期713-727,共15页
Applied Mathematics and Mechanics
基金
国家自然科学基金(面上项目)(11671315)~~
关键词
行波解
临界波速
非局部扩散
基本再生数
traveling wave solution
critical wave speed
nonlocal dispersal
basic reproduction number