期刊文献+

多体系统动力学微分-代数方程L-稳定方法 被引量:1

An L-Stable Method for Differential-Algebraic Equations of Multibody System Dynamics
下载PDF
导出
摘要 针对多体系统动力学微分-代数方程形式,在时间区间上构造L-稳定方法,分别基于等距节点、Chebyshev节点和Legendre节点等非等距节点建立求解格式,依据Ehle定理及猜想,与Padé逼近式对比得到待定矩阵和向量,从而获得L-稳定求解公式,循环求解过程采用Newton迭代法计算.以平面双连杆机械臂系统为例,使用L-稳定方法进行数值仿真,通过改变时间区间节点数和步长对各个指标结果进行比较,并与经典Runge-Kutta法对比.结果表明,该方法具有稳定性好、精度高等优点,适用于长时间情况下的多体系统动力学仿真. An L-stable method over time intervals for differential-algebraic equations of multibody system dynamics was presented. The solution scheme was established based on equidistant nodes and non-equidistant nodes such as Chebyshev and Legendre nodes. According to Ehle’s theorem and conjecture, the unknown matrix and vector in the L-stable solution formula were obtained through comparison with the Padé approximation. The Newtonian iteration method was used during the solution process. The planar 2-link manipulator system was taken as an example, and the results from the L-stable method were compared for different node numbers in the time interval and different steps in the simulation, with those from the classic Runge-Kutta method. The comparison shows that, the proposed method has the advantages of good stability and high precision, and is suitable for multibody system dynamics simulation under long-term conditions.
作者 李博文 丁洁玉 李亚男 LI Bowen;DING Jieyu;LI Yanan(School of Mathematics and Statistics, Qingdao University,Qingdao, Shandong 266071, P.R.China;Center for Computational Mechanics and Engineering Simulation,Qingdao University, Qingdao, Shandong 266071, P.R.China)
出处 《应用数学和力学》 CSCD 北大核心 2019年第7期768-779,共12页 Applied Mathematics and Mechanics
基金 国家自然科学基金(11472143 11772166)~~
关键词 多体系统动力学 L-稳定方法 微分-代数方程 PADÉ逼近 稳定性 multibody system dynamics L-stable method differential-algebraic equation Padé approximation stability
  • 相关文献

参考文献6

二级参考文献85

  • 1钟万勰.结构动力方程的精细时程积分法[J].大连理工大学学报,1994,34(2):131-136. 被引量:509
  • 2林来兴.交会对接动力学模型和动力学特性[J].中国空间科学技术,1994,14(3):47-53. 被引量:5
  • 3钟万勰,高强.约束动力系统的分析结构力学积分[J].动力学与控制学报,2006,4(3):193-200. 被引量:28
  • 4Cardona A,Geradin M.Time integration of the equationsof motion in mechanism analysis[J].Computers&Structures,1989,33(3):801-820.
  • 5Yen J,Petzold L,Raha S.A time integration algorithmfor flexible mechanism dynamics:The DAEα-method[J].Computer Methods in Applied Mechanics andEngineering,1998,158:341-355.
  • 6Arnold M,Brüls O.Convergence of the generalized-αscheme for constrained mechanical systems[J].Multibody System Dynamics,2007,6:22-40.
  • 7Chung J,Hulbert G M.A time integration algorithm forstructural dynamics with improved numerical dissipation:The generalized-αmethod[J].Journal of AppliedMechanics,1993,60(2):371-375.
  • 8Brüls O,Cardona A,Arnold M.Lie group generalized-αtime integration of constrained flexible multibodysystems[J].Mechanism and Machine Theory,2012,48:121-137.
  • 9Negrut D,Rampalli R,Ottarsson G,Sajdak A.On anImplementation of the HHT method in the context ofindex 3 differential algebraic equations of multibodydynamics[J].Journal of Computational and NonlinearDynamics,2007,2(1):73-85.
  • 10Jay L O,Negrut D.A second order extension of thegeneralized-alpha method for constrained systems inmechanics[C]//Bottasso C L,Masarati P,Trainelli L.Multibody Dynamics:Computational Methods andApplications.Berlin:Springer,2008:143-158.

共引文献30

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部