期刊文献+

基于GBLUP和Bayes方法实现山羊体重基因组选择 被引量:3

Genome Selection of Body weight in Goats by GBLUP and Bayes Methods
下载PDF
导出
摘要 为有效实现山羊基因组选择,提高选择准确性,根据前期对内蒙古绒山羊生产性能的遗传评估结果,以山羊的体重(h2=0.11)性状为例,结合NCBI已经公布的山羊基因组序列信息,设定群体传递过程和基因组参数,模拟获得个体表型和基因型数据,利用GBLUP和Bayes方法进行基因组育种值估计。结果表明,不同历史群体变化模式下,基因组选择对山羊体重基因组育种估计值准确性无显著影响(P>0.05)。GBLUP法估计的准确性高于Bayes Lasso,准确性达0.40。在历史群体下降模式下,基因组选择准确性高于恒定模式。 In order to effectively realize genome selection and improve GEBV accuracy, body weight (h 2=0.11) was chosen to perform genomic selection by using simulation in this study. Combing the previous genetic evaluation results of Inner Mongolian cashmere goats' production performance with goat genomic sequence information published in NCBI, the parameters including populations transmission and genomics were set probably. The phenotype and genotype data from individuals was obtained by simulation. The genomic breeding value of body weight was estimated by using GBLUP and Bayesian LASSO in each mode. The results showed:(1)Genomic selection methods had no signifiant effect on the accuracy of genomic estimated breeding value( P >0.05).(2)The accuracy by using the GBLUP method was higher than that in Bayes Lasso method, the values were up to more than 0.40. Additionally, the accuracy of genomic selection in constant mode was lower than that in decreasing mode.
作者 王志英 洪磊 李宏伟 王瑞军 张燕军 苏蕊 刘志红 李金泉 WANG Zhiying;Hong Lei;Li Hongwei;WANG Ruijun;ZHANG Yanjun;SU Rui;LIU Zhihong;LI Jinquan(Inner Mongolia Key Laboratory of Animal Genetics,Breeding and Reproduction,College of Animal Science,Inner Mongolia Agricultural University,Hohhot 010018,China)
出处 《家畜生态学报》 北大核心 2019年第7期22-26,共5页 Journal of Domestic Animal Ecology
基金 国家青年科学基金(31702086) 内蒙古农业大学引进优秀博士第二层次资助(NDYB2016-05)
关键词 山羊 体重 GBLUP和Bayes方法 基因组选择准确性 goats body weight GBLUP and Bayes methods accuracy of genome selection
  • 相关文献

参考文献3

二级参考文献94

  • 1Hazel LN.The genetic basis for constructing selection indexes.Genetics,1943,28(6):476-490.
  • 2Hendersen CR.Best linear unbiased estimation and prediction under a selection model.Biometrics,1975,31(2):423-447.
  • 3Fernando RL,Grossman M.Marker assisted selection using best linear unbiased prediction.Genet Sel Evol,1989,21(4):467-477.
  • 4Lander ES,Botstein D.Mapping mendelian factors underlying quantitative traits using RFLP linkage maps.Genetics,1989,121(1):185-199.
  • 5Meuwissen TH,Hayes B J,Goddard ME.Prediction of total genetic value using genome-wide dense marker maps.Genetics,2001,157(4):1819-1829.
  • 6Sehaeffer LR.Strategy for applying genome-wide selection in dairy cattle.J Anim Breed Genet,2006,123(4):218-223.
  • 7Hayes B J,Bowman P J,Chamberlain AJ,Goddard ME.Invited review:Genomic selection in dairy cattle:progress and challenges.J Dairy Sci,2009,92(2):433-443.
  • 8Sonesson AK,Meuwissen TH.Testing strategies for genomic selection in aquaculture breeding programs.Genet SelEvol,2009,41:37.
  • 9Jarmink JL.Dynamics of long-term genomic selection.Genet Sel Evol,2010,42(1):35.
  • 10Solberg TR,Sonesson AK,Woolliams JA,Meuwissen THE.Reducing dimensionality for prediction of genomewide breeding values.Genet Sel Evol,2009,41(1):29.

共引文献22

同被引文献34

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部