期刊文献+

一款10位逐次逼近型模数转换器设计 被引量:4

A 10-bit Successive Approximation Analog-to-Digital Converter
下载PDF
导出
摘要 基于0.18μm CMOS工艺设计一款10位逐次逼近型模数转换器(SARADC),采用了阻容混合型的数模转换器(DAC)以实现面积与性能上的折衷,高位采用温度码设计以提高DAC的线性度。采用了失调电压较小的静态比较器结构,通过在DAC和比较器之间加入了高增益的前置放大器来消除比较器失调电压对ADC性能所带来的影响。仿真结果表明:在电源电压为2.8V、采样速率为116kS/s、输入信号频率约为57kHz、满摆幅为0.8V的情况下,ADC有效位数(ENOB)达9.99位,信噪失真比(SNDR)为61.9dB,无杂散动态范围(SFDR)为75.57dB,总功耗约为1mW,面积为0.069mm^2。 A 10 bit successive approximation analog-to-digital converter (SAR ADC) based on a 0.18 μm CMOS process is presented. The proposed SAR ADC employs a RC-capable digital-to-analog converter (DAC) to achieve the trade-off between area and performance, and the high bits of the DAC employ temperature codes to improve the linearity of the DAC. A static comparator structure with small offset voltage is used in the ADC, and a high-gain pre-amplifier is added between the DAC and the comparator to eliminate the effects caused by comparator offset voltage on the ADC performance. The simulation results show that the effective number of bits (ENOB) of the ADC is 9.99 bits and the signal-to-noise ratio (SNDR) is 61.9 dB when the power supply voltage is 2.8 V, the sampling rate is 116 kS/s, the input signal frequency is about 57 kHz, and the swing is 0.8 V. Spurious-free dynamic range (SFDR) is 75.57 dB, the total power consumption is approximately 1 mW, and the area is 0.069 mm^2.
作者 车来晟 唐鹤 高昂 牛胜普 CHE Laisheng;TANG He;GAO Ang;NIU Shengpu(University of Electronic Science and Technology of China,Chengdu 610054,China)
机构地区 电子科技大学
出处 《电子与封装》 2019年第7期16-19,23,共5页 Electronics & Packaging
关键词 A/D转换器 逐次逼近型ADC 阻容混合型DAC 温度码 A/D converter SAR ADC RC-capable DAC temperature code
  • 相关文献

参考文献3

二级参考文献30

  • 1Kamalinejad P, Mirabbasi S, Leung V C M. An ultra-low-powerSAR ADC with an area-efficient DAC architecture. IEEE Inter-national Symposium on Circuits and Systems (ISCAS), 2011: 13.
  • 2Guo W, Mirabbasi S. A low-power 10-bit 50-MS/s SAR ADC us-ing a parasitic-compensated split-capacitor DAC. IEEE Interna-tional Symposium on Circuits and Systems (ISCAS), 2012: 1275.
  • 3Kuo C H, Hsieh C E. A high energy-efFiciency SAR ADCbased on partial floating capacitor switching technique. ESS-CIRC, 2011.
  • 4Van Elzakker M, van Tuijl E, Geraedts P, et al. A 10-bit charge-redistribution ADC consuming 1.9 //W at 1 MS/s. IEEE J Solid-State Circuits, 2010, 45(5): 1007.
  • 5Zhong L, Yang H,Zhang C. Design of an embedded CMOS CRSAR ADC for low power applications in bio-sensor SOC. ASI-CON, 2007: 668.
  • 6Ginsburg B P, Chandrakasan A P. Highly interleaved 5-bit, 250-MSample/s, 1.2-mW ADC with redundant channels in 65-nmCMOS. IEEE J Solid-State Circuits, 2008, 43(12): 2641.
  • 7McCreary J L, Gray P R. LL-MOS charge redistribution analog-to-digital conversion techniques. Part I. IEEE J Solid-State Cir-cuits, 1975, 10(6):371.
  • 8Agnes A, Bonizzoni E, Maloberti F. Design of an ultra-lowpower SA-ADC with medium/high resolution and speed. IEEEInternational Symposium on Circuits and Systems (ISCAS),2008.
  • 9Chen Y, Zhu X, Tamura H, et al. Split capacitor DAC mismatchcalibration in successive approximation ADC. IEEE Custom In-tegrated Circuits Conference, 2009: 279.
  • 10Zhu Y,Chan C H, Chio U F, et al. A voltage feedback chargecompensation technique for split DAC architecture in SAR ADC.IEEE International Symposium on Circuits and Systems (IS-CAS), 2010: 4061.

共引文献1

同被引文献17

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部