期刊文献+

带厚尾噪声的鲁棒Student’s t容积滤波器 被引量:1

Robust Student’s t based cubature filter with heavy tailed noise
下载PDF
导出
摘要 为了解决带厚尾过程和量测噪声的非线性状态估计问题,本文提出了一种新的鲁棒非线性滤波器.首先,对带厚尾过程和量测噪声的非线性系统进行了数学建模,并推导了基于Student’s t近似的鲁棒非线性滤波器(RSTNF)的一般结构.其次,针对RSTNF中涉及到的含有关于Student’s t分布的多维非线性函数积分的求解问题,提出了基于Student’s t分布的球径容积准则(STSRCR),并在此基础上设计了一种新的鲁棒Student’s t容积滤波器(RSTCF).最后,利用目标跟踪仿真验证了本文提出的带厚尾噪声的RSTCF的有效性以及与现有方法相比的优越性. In this paper,a new robust nonlinear filter is proposed to solve the problem of nonlinear state estimation with heavy tailed process and measurement noises.Firstly,the nonlinear state space model with heavy tailed process and measurement noises is constructed.On this basis,a robust Student’s t based nonlinear filter(RSTNF)can be derived.Secondly,a new third-degree Student’s t spherical radial cubature rule(STSRCR)is proposed to calculate the Student’s t weighted integral in RSTNF,from which a new robust Student’s t based cubature filter(RSTCF)can be obtained.Finally,the efficiency and superiority of the proposed RSTCF with heavy process and measurement noises,as compared with existing methods,are shown in the simulation of target tracking.
作者 程然 缪礼锋 王婷婷 CHENG Ran;MIAO Li-feng;WANG Ting-ting(AVIC LEIHUA Electronic Technology Institute, Wuxi Jiangsu 214063, China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2019年第7期1174-1181,共8页 Control Theory & Applications
基金 装备预研领域基金项目(6140413010302) 航空科学基金项目(2017ZC07009)资助~~
关键词 非线性状态估计 厚尾噪声 Student’s t分布 三次幂球径容积准则 鲁棒Student’s t容积滤波器 nonlinear state estimation heavy tailed noises Student’s t distribution third-degree spherical radial cubature rule robust Student’s t based cubature filter
  • 相关文献

参考文献4

二级参考文献42

  • 1赵琳.非线性系统滤波理论[M].北京:国防工业出版社,2012.
  • 2Wu Y X, Hu D W, Wu M P, Hu X P. A numerical-integration perspective on Gaussian filters. IEEE Transactions on Signal Processing, 2006, 54(8): 2910-2921.
  • 3Julier S J, Uhlman J K, Durrant-Whyte H F. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 2000, 45(3): 477-482.
  • 4Julier S J, Uhlman J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92(3): 401-422.
  • 5Lefebvre T, Bruyninckx H, de Schuller J. Comment on "A new method for the nonlinear transformation of means and covariances in filters and estimators" [and author's reply]. IEEE Transactions on Automatic Control, 2002, 47(8): 1406-1409.
  • 6Arasaratnam I, Haykin S. Cubature Kalman filters. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269.
  • 7Jia B, Xin M, Cheng Y. High-degree cubature Kalman filter. Automatica, 2013, 49(2): 510-518.
  • 8Julier S J, Uhlman J K. The scaled unscented transformation. In: Proceedings of the 2000 American Control Conference. Anchorage, AK, USA: IEEE, 2002, 6: 4555-4559.
  • 9Chang L B, Hu B Q, Li A, Qin F J. Transformed unscented Kalman filter. IEEE Transactions on Automatic Control, 2013, 58(1): 252-257.
  • 10Julier S J, Uhlman J K. A consistent, debiased method for converting between polar and Cartesian coordinate systems. In: Proceedings of Acquisition, Tracking and Pointing XI. Orlando, 1997, 3086. 110-121.

共引文献57

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部