期刊文献+

全钒液流电池用致密皮层非对称AEM结构优化 被引量:3

Morphology optimization of defect-free skinned asymmetric anion exchange membranes for all-vanadium flow battery
下载PDF
导出
摘要 采用双凝胶浴相转化方法制备了厚度可控的具有致密皮层的季铵化聚砜非对称阴离子交换膜(AEM),应用于全钒液流电池.超薄无缺陷皮层保证了膜的阻钒能力.同时,与致密季铵化聚砜AEM相比,致密皮层季铵化聚砜非对称AEM的面电阻(AR)大幅度降低.通过改变初生态膜浸入正戊醇的时间,可以调节膜的形貌和性质,从而平衡膜的阻钒能力和AR.当浸入正戊醇的时间为20 s时,制备的致密皮层季铵化聚砜非对称AEM DC40%-20s的等效厚度大约为3.87μm,实现膜阻钒能力和AR的最好平衡,并获得了良好的电池性能(在60 mA/cm^2下,库伦效率为98.2%,电压效率为82.5%,能量效率为81.0%)和适中的放电容量衰减速率(在50 mA/cm^2下,0.57%/圈). A dual-coagulation bath phase inversion method was used to prepare a defect-free skinned asymmetric quaternized polysulfone anion exchange membranes(AEMs) with controllable equivalent thickness which were applied to all-vanadium flow battery. The ultra-thin, defect-free skin layer guarantees the vanadium blocking ability of the membrane. At the same time, the area resistance(AR) of the defect-free skinned asymmetric AEM is greatly reduced compared with the dense AEM, mainly due to the interconnected pore structure in the support layer. By changing the immersion time of chloromethylated polysulfone solution in n-pentanol, the morphology and properties of the membranes can be adjusted, thus balancing the vanadium blocking ability and AR of the membrane. When the immersion time in n-pentanol was 20 s, the equivalent thickness of the prepared defect-free skinned asymmetric quaternized polysulfone AEM DC40%-20 s was about 3.87 μm, achieving the optimum balance of vanadium blocking ability and AR. The flow battery assembled with DC40%-20 s achieved good battery performance(at 60 mA/cm^2, coulombic efficiency: 98.2%;voltage efficiency: 82.5%;energy efficiency: 81.0%) and moderate discharge capacity decay rate(0.57% per cycle at 50 mA/cm^2).
作者 张代双 彭桑珊 肖武 焉晓明 贺高红 ZHANG Daishuang;PENG Sangshan;XIAO Wu;YAN Xiaoming;HE Gaohong(State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116024, China)
出处 《膜科学与技术》 CAS CSCD 北大核心 2019年第3期1-7,共7页 Membrane Science and Technology
基金 国家自然科学基金项目(21776034,21476044) 国家重点研究发展计划(2016YFB0101203) 科技部重点领域创新团队(2016RA4053) 教育部长江学者奖励计划项目(T2012049) 大连理工大学重大项目培育科研专题项目(DUT16TD19)
关键词 低离子交换容量 阴离子交换膜 致密皮层非对称 全钒液流电池 low ion exchange capacity anion exchange membrane defect-free skinned asymmetric allvanadium flow battery
  • 相关文献

参考文献2

二级参考文献38

  • 1宋文生,李磊,王宇新,许莉.磺化聚醚醚酮与聚砜共混膜导电与传质特性研究[J].膜科学与技术,2004,24(3):15-19. 被引量:15
  • 2刘晨光,钟双玲,赵成吉,那辉,吴忠文.不同侧基对磺化聚醚醚酮质子交换膜的影响[J].吉林大学学报(理学版),2006,44(1):101-104. 被引量:5
  • 3任素贞,孙公权,吴智谋,李辰楠,金巍,辛勤,杨学锋.磺化聚醚醚酮/聚偏氟乙烯共混膜的研究[J].电源技术,2006,30(3):200-202. 被引量:8
  • 4Ostwald W. Elektrisehe Eigenschaften halbdurchlassiger Scheidewande[J]. Z Phys Chem, 1890, 6-71- 82.
  • 5Donnan F G. The theory of membrane equilibrium in oresence of a non-dialyzable electrolyte[J ]. Z Electrochem, 1911,17: 572- 581.
  • 6Devanathan R. Recent developments in proton exchange membranes for fuel cells[J]. Energy Enviro Sci, 2008, 1 (1): 101-119.
  • 7Hamrock S J, Yandrasits M A. Proton exchange membranes for fuel cell applications [ J ]. Polymer Reviews, 2006, 46(3) : 219 - 244.
  • 8Smitha B, Sridhar S, Khan A A. Solid polymer electrolyte membranes for fuel cell applications - a review [ J ]. J Membr Sci, 2005, 259(1-2) : 10-26.
  • 9Savadogo O. Emerging membranes for electrochemical systems (I) Solid polymer electrolyte membranes for fuel cdl systems [J]. J New Mater Electrochem Syst,1998,1:47- 66.
  • 10Yu J, Yi B, Xing D, et al. Degradation mechanism of polystyrene sulfonic acid membrane and application of its composite membranes in fuel cells[J]. Phys Chem Chem Phys, 2003,5 : 611 - 615.

共引文献44

同被引文献17

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部