摘要
以玉米醇溶蛋白为纳米载体,通过反溶剂法制备玉米醇溶蛋白负载叶黄素纳米粒(Zein-Lutein),并对其结构表征进行解析。通过单因素和正交试验,优化玉米醇溶蛋白负载叶黄素纳米粒的制备工艺,得到了玉米醇溶蛋白负载叶黄素纳米粒制备的最佳工艺条件为:玉米醇溶蛋白与叶黄素质量比201,水合时间150min,水合温度50℃,该条件下对叶黄素的包封率为81.0%。所制备的Zein-Lutein纳米粒经Nano分析仪测得平均粒径为398.3nm;透射电镜(TEM)显示叶黄素被玉米醇溶蛋白包埋后,Zein-Lutein纳米体系形态和分布发生了改变;傅里叶红外光谱(FTIR)分析证实玉米醇溶蛋白能够负载叶黄素形成纳米结构。
The Zein-Lutein nanoparticles were prepared using zein as nanocarrier by anti-solvent method, and the structural characterization of the nanoparticles were studied. The optimal preparation process of Zein-Lutein was explored on the basis of single factor and orthogonal array experiments. The optimal preparation conditions were as followed: the ratio of the zein and lutein ratio was 20 1, hydration time 150 min, hydration temperature 50 ℃, the coating rate of lutein 81.0%. Under the conditions, the average particle size was 398.3 nm, TEM images showed that the morphological and distribution of Zein-Lutein were changed when lutein was efficiently loaded into zein, and FT-IR spectra confirmed that lutein had been entrapped by zein and formed a nano-binding structure.
作者
焦岩
韩赫
常影
李冲
高建伟
JIAO Yan;HAN He;CHANG Ying;LI Chong;GAO Jian-wei(College of Food and Biological Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, China;Key Laboratory of Corn Deep Processing Theory and Technology, Qiqihar, Heilongjiang 161006, China)
出处
《食品与机械》
北大核心
2019年第7期7-12,97,共7页
Food and Machinery
基金
黑龙江省教育厅基本业务专项(编号:135109258)
黑龙江省自然基金优秀青年项目(编号:YQ2019C024)
黑龙江省教育厅科研创新团队项目(编号:135309113)