期刊文献+

无人车鱼眼双目深度提取研究 被引量:3

Rearch on Depth Estimation in Unmanned Vehicle Using Fisheye Binocular Lens
下载PDF
导出
摘要 对无人车鱼眼双目环境感知系统模型进行了研究,分析了鱼眼双目模型与针孔双目模型的转化关系。针对鱼眼图像变形大的特点,提出了一种用于鱼眼相机图像矫正的余弦相似方法插值算法,算法采用余弦相似方法衡量待插值点与周围灰度已知点的相似性,对因重投影产生的像素缺失进行了有效插值。最后,通过场景深度提取试验对该模型和算法进行了试验验证。研究结果表明,与传统双目模型相比,鱼眼双目模型能够获得更大范围的深度信息;对于鱼眼双目模型中的插值,所提出算法能更好地处理插值细节,从而更加有效地提取场景的深度信息。 The model of the binocular environmental perception system of the unmanned vehicle fisheye was studied.The conversion relationship between the fisheye binocular model and the pinhole binocular model was analyzed.Aiming at the large deformations of the fisheye images, a method was proposed for the conversion, a cosine similar interpolation algorithm was developed for the image correction of fisheye cameras.The algorithm resembled cosine similarity to measure the similarity between the interpolation point and the surrounding gray-scale known points.The pixel missing due to re-projection was effectively interpolated.Finally, the scene depth extraction experiments were performed.The model and algorithm presented herein were verified by experiments.The results show that compared with the traditional binocular model, the fisheye binocular model may obtain a greater range of depth informations;for the interpolation in the fisheye binocular model, the algorithm may better handle the interpolation details and thus extract the depth informations of the scene more effectively.
作者 宇文旋 赵明明 陈龙 YUWEN Xuan;ZHAO Mingming;CHEN Long(School of Mechanical and Electrical Engineering,University of Electronic Scienceand Technology of China,Chengdu,611731;School of Data and Computer Science,Sun Yatsen University,Guangzhou,510006)
出处 《中国机械工程》 EI CAS CSCD 北大核心 2019年第13期1577-1584,共8页 China Mechanical Engineering
基金 国家自然科学基金资助项目(61773414)
关键词 无人车 双目视觉 鱼眼双目视觉 图像插值 环境感知 unmanned vehicle binocular vision fisheye binocular vision image interpolation environmental perception
  • 相关文献

参考文献1

二级参考文献11

  • 1[1]Swaminathan R, Nayar S K. Non-metric calibration of wideangle lenses and polycameras. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10): 1172~1178
  • 2[2]Kang S B. Radial distortion snakes. In: Proceedings of IAPR Workshop on Machine Vision Applications, Tokyo, 2000. 603~606
  • 3[3]Devernay F, Faugeras O. Straight lines have to be straight:Automatic calibration and removal of distortion from scenes of structured environments. Machine Vision and Applications,2001, 13(1):14~24
  • 4[4]Weng J, Cohen P, Herniou M. Camera calibration with distortion models and accuracy evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14 (10): 965~980
  • 5[5]Nomura Y, Sagara M, Naruse H, Ide A. Simple calibration algorithm for high-distortion-lens camera. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14 (11):1095~1100
  • 6[6]Shah S, Aggarwal J K. Intrinsic parameter calibration procedure for a (high distortion) fish-eye lens camera with distortion model and accuracy estimation. Pattern Recognition, 1996, 29(11): 1775~1788
  • 7[7]Zhang Z. On the epipolar geometry between two images with lens distortion. In: Proceedings of the International Conference on Pattern Recognition, Vienna, Austria, 1996. 407~411
  • 8[8]Stein G P. Lens distortion calibration using point correspondences. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Puerto Rico, 1997. 143~148
  • 9[9]Fitzgibbon A W. Simultaneous linear estimation of multiple view geometry and lens distortion. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, 2001. 125~132
  • 10[10]Maybank S. Theory of Reconstruction from Image Motion. In:Springer Series in Information Sciences, New York: SpringerVerlag, 1993

共引文献70

同被引文献40

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部