期刊文献+

软件开发活动数据集的层次化、多版本化方法 被引量:2

Multi-level and Multi-version Approach for Software Development Dataset
下载PDF
导出
摘要 随着开源软件的兴起及软件开发支撑工具的普及,Internet上积累了大量开放的软件开发活动数据,越来越多的实践者与研究者尝试从中获取提高软件开发效率和产品质量的洞察。为了提高数据分析的效率、方便分析结果的重现与对比,许多工作提出了构建与使用共享数据集。然而,现有软件开发活动数据集的构建过程可追溯性差、适用范围窄,对数据随时间、环境发生的变化欠考虑。这些不足直接威胁数据的质量及分析结果的有效性。针对该问题,提出一种层次化、多版本化的方法来构建与使用软件开发活动数据集。层次化是指在数据集中包括收集和后续处理所得的原始、中间和最终数据,建立数据集的可追溯性并扩展其适用范围。多版本化是指通过多种方式进行多次数据收集,使数据使用者能够观察到数据的变化,为数据质量及分析结果有效性的验证和提高创造条件。通过基于该方法构建的Mozilla问题追踪数据集进行示范,并验证了该方法能够帮助数据使用者高效地使用数据。 With the fast development of open source software and wide application of development supporting tools, there have been a great many of open software development data on the Internet. To improve the software development efficiency and product quality, more and more practitioners and researchers attempt to obtain insights of software development from the data. To facilitate the data analyses and their reproduction and comparison, building and using shared datasets are proposed and practiced. However, the existing datasets are lack of traceability of dataset construction process, application scope, and consideration of data variation over time and with environment changes, which threat the data quality and analysis validity. To address these problems, an advanced approach is proposed for sharing and using the software development datasets. It constructs datasets with multiple levels and multiple versions. Through multiple levels, the datasets remain the raw data, intermediate data, and final data to possess data traceability. Meanwhile, by multiple versions, users can compare and observe the data variety to verify and improve data quality and analysis validity. Based on the previously constructed Mozilla issue tracking dataset, it is demonstrated that how to build and use multi-level and multi-version software development dataset and verified that the proposed approach can help users efficiently use the dataset.
作者 朱家鑫 周明辉 ZHU Jia-Xin;ZHOU Ming-Hui(Institute of Software, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China;Key Laboratory of High Confidence Software Technologies of Ministry of Education (Peking University), Beijing 100871, China;Technology Center of Software Engineering, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China)
出处 《软件学报》 EI CSCD 北大核心 2019年第7期2109-2123,共15页 Journal of Software
基金 国家重点研发计划(2018YFB1004201) 国家自然科学基金(61432001,61825201)~~
关键词 数据驱动的软件工程 软件开发活动数据 数据分析 数据质量 数据集 data-driven software engineering software development data data analysis data quality dataset
  • 相关文献

参考文献4

二级参考文献184

  • 1Aebi, D., Perrochon, L. Towards improving data quality. In: Sarda, N.L., ed. Proceedings of the International Conference on Information Systems and Management of Data. Delhi, 1993. 273~281.
  • 2Wang, R.Y., Kon, H.B., Madnick, S.E. Data quality requirements analysis and modeling. In: Proceedings of the 9th International Conference on Data Engineering. Vienna: IEEE Computer Society, 1993. 670~677.
  • 3Rahm, E., Do, H.H. Data cleaning: problems and current approaches. IEEE Data Engineering Bulletin, 2000,23(4):3~13.
  • 4Galhardas, H., Florescu, D., Shasha, D., et al. AJAX: an extensible data cleaning tool. In: Chen, W.D., Naughton, J.F., Bernstein, P.A., eds. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. Texas: ACM, 2000. 590.
  • 5Hernandez, M.A., Stolfo, S.J. Real-World data is dirty: data cleansing and the merge/purge problem. Data Mining and Knowledge Discovery, 1998,2(1):9~37.
  • 6Lee, M.L., Ling, T.W., Lu, H.J., et al. Cleansing data for mining and warehousing. In: Bench-Capon, T., Soda, G., Tjoa, A.M., eds. Database and Expert Systems Applications. Florence: Springer, 1999. 751~760.
  • 7Monge, A.E. Matching algorithm within a duplicate detection system. IEEE Data Engineering Bulletin, 2000,23(4):14~20.
  • 8Monge, A.E., Elkan, C. The field matching problem: algorithms and applications. In: Simoudis, E., Han, J.W., Fayyad, U., eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Oregon: AAAI Press, 1996. 267~270.
  • 9Savasere, A., Omiecinski, E., Navathe, S.B. An efficient algorithm for mining association rules in large databases. In: Dayal, U., Gray, P., Nishio, S., eds. Proceedings of the 21st International Conference on Very Large Data Bases. Zurich: Morgan Kaufmann, 1995. 432~444.
  • 10Srikant, R., Agrawal, R. Mining Generalized Association Rules. In: Dayal, U., Gray, P., Nishio, S., eds. Proceedings of the 21st International Conference on Very Large Data Bases. Zurich: Morgan Kaufmann, 1995. 407~419.

共引文献553

同被引文献27

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部