期刊文献+

云计算调度粒子群改进算法 被引量:4

Improved Particle Swarm Optimization Algorithm for Cloud Computing Scheduling
下载PDF
导出
摘要 云计算资源调度是云计算中一个关键且复杂的调度问题,需要考虑众多的因素.为减少任务完成时间,本文提出了一种云资源调度粒子群改进算法.首先,本文在惯性权重线性递减的基础上,加入了混沌随机数扰动,使惯性权重有概率的适度增加,以便于跳出局部搜索,进行全局搜索;其次,针对粒子群算法和蚁群算法都容易陷入局部最优的缺点,结合粒子群算法和蚁群算法的优化策略,提出了一种改进的混合优化策略.其仿真结果及实际算例测试结果表明,在相同条件下改进算法能够寻到更精确的解. Cloud computing resource scheduling is a key and complex scheduling problem in cloud computing,and many factors need to be considered.In order to reduce the time of cloud computing,an Improved Particle Swarm Optimization (IPSO) algorithm is proposed.Based on the linear decreasing inertia weight,the chaotic constant disturbance is added to increase the inertia weight with little probability,so as to get rid of the local search and get the global search.Meanwhile,in order to solve the defect that the two algorithms fall into partial optimization easily,the proposed algorithm combines the optimization strategy of particle swarm optimization and ant colony optimization.The Matlab simulation and the testing of practical examples results show that the improved algorithm can get a more accurate solution under the same condition.
作者 罗云 唐丽晴 LUO Yun;TANG Li-Qing(Department of Computer Application, China Coast Guard Academy, Ningbo 315801, China)
出处 《计算机系统应用》 2019年第7期151-156,共6页 Computer Systems & Applications
关键词 云计算 资源调度 粒子群 惯性权重递减 混沌随机数扰动 cloud computing resource scheduling Particle Swarm Optimization (PSO) Linear Decreasing inertia Weight (LDW) chaotic constant disturbance
  • 相关文献

参考文献10

二级参考文献77

  • 1孟凡超,张海洲,初佃辉.基于蚁群优化算法的云计算资源负载均衡研究[J].华中科技大学学报(自然科学版),2013,41(S2):57-62. 被引量:13
  • 2杜琼,周一届.新的进化算法——文化算法[J].计算机科学,2005,32(9):142-144. 被引量:15
  • 3沈艳,郭兵,古天祥.粒子群优化算法及其与遗传算法的比较[J].电子科技大学学报,2005,34(5):696-699. 被引量:90
  • 4冯翔,陈国龙,郭文忠.粒子群优化算法中加速因子的设置与试验分析[J].集美大学学报(自然科学版),2006,11(2):146-151. 被引量:22
  • 5Kenney J,Eberhart R.Particle Swarm Optimization[C] //Proc.of IEEE International Conf.on Neural Networks.Perth,USA:[s.n] ,1995.
  • 6Myerson J M.Cloud Computing Versus Grid Computing[EB/OL].[2010-10-12].http://www.ibm.com/developerworks/web/library/wa-cloudgrid/.
  • 7CLOUDS Lab.A Framework for Modeling and Simulation of Cloud Computing Infrastructures and Services Introduction[EB/OL].[2010-10-12].http://www.buyya.com/gridbus/cloudsim/.
  • 8Eberhart R C,Kennedy J. A new optimizer using particle swarm theory [A]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science [C]. Piscataway, USA: IEEE Service Center, 1995. 39-43.
  • 9Eberhart R C,Shi Y H. Particle swarm optimization: developments, applications and resources [A]. Proceedings of the IEEE Congress on Evolutionary Computation [C]. Piscataway, USA: IEEE Service Center, 2001. 81-86.
  • 10Shi Y H,Eberhart R C. Fuzzy adaptive particle swarm optimization [A]. Proceedings of the IEEE Congress on Evolutionary Computation [C]. Piscataway, USA: IEEE Service Center, 2001. 101-106.

共引文献376

同被引文献38

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部